精英家教网 > 高中数学 > 题目详情
13.圆x2+y2-2x+4y=0与2tx-y-2-2t=0(t∈R)的位置关系为(  )
A.相离B.相切C.相交D.以上都有可能

分析 观察动直线2tx-y-2-2t=0(t∈R)可知直线恒过点(1,-2),然后判定点(1,-2)在圆内,从而可判定直线与圆的位置关系.

解答 解:直线2tx-y-2-2t=0恒过(1,-2)
而12+(-2)2-2×1+4×(-2)=-5<0
∴点(1,-2)在圆x2+y2-2x+4y=0内
则直线2tx-y-2-2t=0与圆x2+y2-2x+4y=0相交
故选:C.

点评 本题主要考查了直线与圆的位置关系的判定,解题的关键找出直线恒过的定点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=x3-x-1在区间[1,1.5]内的一个零点附近曲函数值用二分法逐次计算列表如下:
 x 1 1.5 1.25 1.3751.3125 
 f(x)-1 0.875-0.2969 0.2246-0.05151
那么方程x3-x-1=0的一个近似根(精确度为0.1)为 (  )
A.1.3B.1.3125C.1.4375D.1.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=-x2+2ax-3与g(x)=(a+1)1-x在区间[1,2]上都是减函数,则实数a的取值范围是(  )
A.(-1,0)B.(-1,0)∪(0,1]C.(0,1)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一组数据为15,17,14,10,15,17,17,14,16,12,设其平均值为m,中位数为n,众数为p,则有m,n,p的大小关系为m<n<p.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.
(1)求圆C1的圆心坐标;
(2)求线段AB的中点M的轨迹C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在一次抽样活动中,采取系统抽样,若第一组抽取的是2号,第二组抽取的为7号,则第五组抽取的是(  )号.
A.20B.21C.22D.23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.画出函数f(x)=x2-2|x|-3的图象,并根据图象写出函数f(x)的单调区间以及在该区间的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点F是抛物线τ:x2=2py(p>0)的焦点,F1是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,若线段FF1的中点P恰为抛物线τ与双曲线C的渐近线在第一象限内的交点,则双曲线C的离心率e的值为(  )
A.$\frac{{3\sqrt{2}}}{2}$B.$\frac{{3\sqrt{3}}}{4}$C.$\frac{9}{8}$D.$\frac{{3\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.根据三个点(0,2),(4,4),(8,9)的坐标数据,求得的回归直线方程是(  )
A.$\stackrel{∧}{y}$=3x-1B.$\stackrel{∧}{y}$=$\frac{7}{8}$x+$\frac{3}{2}$C.$\stackrel{∧}{y}$=x+2D.$\stackrel{∧}{y}$=$\frac{1}{3}$x+$\frac{10}{3}$

查看答案和解析>>

同步练习册答案