精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2x-1(a∈R),若对任意x1∈[1,+∞),总存在x2∈R,使f(x1)=g(x2),则实数a的取值范围是( )

A. B. C. D.

【答案】C

【解析】

a分类讨论,分别求出函数f(x)和的值域,比较两个函数的值域即得解.

a=0时,函数f(x)=2x-1的值域为[1,+∞),函数 的值域为[0,+ +∞)满足题意.

当a<0时,y=的值域为(2a,+∞),y=的值域为[a+2,-a+2],

因为a+2-2a=2-a>0,所以a+2>2a,所以此时函数g(x)的值域为(2a,+∞),由题得2a<1,即a<,即a<0.

当a>0时,y=的值域为(2a,+∞), y=的值域为[-a+2,a+2],

当a≥时,-a+2≤2a,由题得.

当0<a<时,-a+2>2a,由题得2a<1,所以a<.所以0<a<.

综合得a的范围为a<或1≤a≤2.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知曲线C1(t为参数),C2(m为参数).

(1)将C1,C2的方程化为普通方程,并说明它们分别表示什么曲线;

(2)设曲线C1与C2的交点分别为A,B,O为坐标原点,求△OAB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的外接球的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线:交抛物线两点,

(1)若的中点为,直线的斜率为,证明:为定值;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|ax-2|,不等式f(x)≤4的解集为{x|-2≤x≤6}.

(1)求实数a的值;

(2)设g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:x2=4y的焦点为F,直线:y=kx+b(k≠0)交抛物线C于A、B两点,|AF|+|BF|=4,M(0,3).

(1)若AB的中点为T,直线MT的斜率为,证明:k· 为定值;

(2)求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F.

(1)求证:EF∥平面PAB;

(2)若PB与平面ABCD所成角的正弦值为,求二面角P-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 离心率等于是椭圆上的两点.

(1)求椭圆的方程;

(2)是椭圆上位于直线两侧的动点.当运动时,满足,试问直线的斜率是否为定值?如果为定值,请求出此定值;如果不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列说法:

1)命题的否定形式是

2)已知,则

3)已知回归直线的斜率的估计值是2,样本点的中心为,则回归直线方程为

4)对分类变量的随机变量的观测值来说,越小,判断有关系的把握越大;

5)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变.

其中正确说法的个数为(

A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案