精英家教网 > 高中数学 > 题目详情
3.椭圆C的中心为原点,焦点在y轴上,离心率$e=\frac{{\sqrt{2}}}{2}$,椭圆上的点到焦点的最短距离为$\sqrt{2}-1$,则椭圆的标准方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1.

分析 根据题意建立关于a、c的方程组,解出a=$\sqrt{2}$,c=1,从而得到b2=a2-c2=1,可得椭圆的方程.

解答 解:∵$e=\frac{{\sqrt{2}}}{2}$,椭圆上的点到焦点的最短距离为$\sqrt{2}-1$,
∴$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,a-c=$\sqrt{2}$-1,
解得a=$\sqrt{2}$,c=1,
∴b2=a2-c2=1,
由此可得椭圆的方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1,
故答案为$\frac{{x}^{2}}{2}+{y}^{2}$=1.

点评 本题已知椭圆满足的条件,求椭圆的方程,着重考查了椭圆的定义与标准方程等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图(1),已知长方形ABCD中,AB=2,AD=1,M为CD的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM,如图(2)E为BD的中点.
(1)求证:CE∥平面ADM;
(2)求四面体EAMD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列结论正确的是(  )
A.圆锥的顶点与底面圆周上的任意一点的连线都是母线
B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥
C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥
D.各个面都是三角形的几何体是三棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$,$(2\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-2\overrightarrow b)$,则向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影为(  )
A.-$\frac{5}{3}$B.$\frac{5}{4}$C.$-\frac{5}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若-1<a<b<1,则下列不等式中成立的是(  )
A.-2<a-b<0B.-2<a-b<-1C.-1<a-b<0D.-1<a-b<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点P是抛物线C1:y2=4x上的动点,过P作圆(x-3)2+y2=2的两条切线,则两条切线的夹角的最大值为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正数x、y满足:2x+y-xy=0,则x+2y的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若集合A={x|-2<x<1},B={x|0<x<2},则集合A∪B=(  )
A.{x|-1<x<1}B.{x|-2<x<2}C.{x|0<x<1}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知二次函数f(x)=ax2+bx+c.
(1)若a=c>0,f(1)=1,对任意x∈|[-2,2],f(x)的最大值与最小值之和为g(a),求g(a)的表达式;
(2)若a,b,c为正整数,函数f(x)在(-$\frac{1}{4}$,$\frac{1}{4}$)上有两个不同零点,求a+b+c的最小值.

查看答案和解析>>

同步练习册答案