精英家教网 > 高中数学 > 题目详情
18.若a=log${\;}_{\frac{1}{3}}$2,b=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,c=($\frac{1}{2}$)0.3,则,a,b,c的大小关系为a<c<b.

分析 根据指数函数与对数函数的图象与性质,借助于0和1,对a、b、c大小比较即可.

解答 解:a=log${\;}_{\frac{1}{3}}$2<${log}_{\frac{1}{3}}$1=0,
b=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$>${log}_{\frac{1}{2}}$$\frac{1}{2}$=1,
c=($\frac{1}{2}$)0.3<${(\frac{1}{2})}^{0}$=1,且c>0,
∴a<0<c<1<b;
∴a,b,c的大小关系为a<c<b.
故答案为:a<c<b.

点评 本题考查了利用指数函数与对数函数的单调性比较大小的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知等差数列{an}的公差d≠0,且a3+a9=a10-a8.若an=0,则n=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线y=-$\sqrt{3}$x+2$\sqrt{3}$的倾斜角是(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.把函数$y=\frac{1}{x}$的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为(  )
A.$y=\frac{3-2x}{x-1}$B.$y=\frac{2x-1}{x-1}$C.$y=-\frac{2x+1}{x+1}$D.$y=\frac{2x+3}{x+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.高斯记号[x]表示不超过实数x的最大整数,如[-1.23]=-2,[1.23]=1,则方程[log2(lgx)]=0的解集为[10,100).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.命题:“在平面直角坐标系中,两平行直线的斜率相等”的条件是两条直线平行,结论是两条直线斜率相等.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+2$\sqrt{3}$),则实数c的值是(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,右焦点恰为圆C2:(x$-\sqrt{3}$)2+y2=7的圆心.
(1)求椭圆C1的方程;
(2)设直线l与曲线C1,C2都只有一个公共点,记直线l与圆C2的公共点为A,求A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一条直线与两条相交直线成等角,那么这条直线与这两条相交直线的位置关系是相交或异面.

查看答案和解析>>

同步练习册答案