【题目】椭圆:的离心率为,长轴端点与短轴端点间的距离为.
(I)求椭圆的方程;
(II)设过点 的直线与椭圆交于两点,为坐标原点,若为直角三角形,求直线的斜率.
科目:高中数学 来源: 题型:
【题目】设,分别是椭圆C:的左、右焦点,过且斜率不为零的动直线l与椭圆C交于A,B两点.
Ⅰ求的周长;
Ⅱ若存在直线l,使得直线,AB,与直线分别交于P,Q,R三个不同的点,且满足P,Q,R到x轴的距离依次成等比数列,求该直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,平面ABC,点D,E,F分别为PC,AB,AC的中点.
(Ⅰ)求证:平面DEF;
(Ⅱ)求证:.
阅读下面给出的解答过程及思路分析.
解答:(Ⅰ)证明:在中,因为E,F分别为AB,AC的中点,所以①.
因为平面DEF,平面DEF,所以平面DEF.
(Ⅱ)证明:因为平面ABC,平面ABC,所以②.
因为D,F分别为PC,AC的中点,所以.所以.
思路第(Ⅰ)问是先证③,再证“线面平行”;
第(Ⅱ)问是先证④,再证⑤,最后证“线线垂直”.
以上证明过程及思路分析中,设置了①~⑤五个空格,如下的表格中为每个空格给出了三个选项,其中只有一个正确,请选出你认为正确的选项,并填写在答题卡的指定位置.
空格 | 选项 | ||
① | A. | B. | C. |
② | A. | B. | C. |
③ | A.线线垂直 | B.线面垂直 | C.线线平行 |
④ | A.线线垂直 | B.线面垂直 | C.线线平行 |
⑤ | A.线面平行 | B.线线平行 | C.线面垂直 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.
(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)写出直线的普通方程及曲线的直角坐标方程;
(2)已知点,点,直线过点且与曲线相交于,两点,设线段的中点为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设分别是正方体的棱上两点,且,给出下列四个命题:①三棱锥的体积为定值;②异面直线与所成的角为;③平面;④直线与平面所成的角为.其中正确的命题为( )
A. ①② B. ②③ C. ①②④ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机万台,其总成本为,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入万元满足
(1)将利润表示为产量万台的函数;
(2)当产量为何值时,公司所获利润最大?最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,斜率为的直线交抛物线于,两点,当直线过点时,以为直径的圆与直线相切.
(1)求抛物线的方程;
(2)与平行的直线交抛物线于,两点,若平行线,之间的距离为,且的面积是面积的倍,求和的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)判断函数的奇偶性,并说明理由;
(2)设,问函数的图像是否关于某直线成轴对称图形,如果是,求出的值,如果不是,请说明理由;(可利用真命题:“函数的图像关于某直线成轴对称图形”的充要条件为“函数是偶函数”)
(3)设,函数,若函数与的图像有且只有一个公共点,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com