【题目】已知椭圆E:(a>b>0)的离心率e.
(1)若点P(1,)在椭圆E上,求椭圆E的标准方程;
(2)若D(2,0)在椭圆内部,过点D斜率为的直线交椭圆E于M.N两点,|MD|=2|ND|,求椭圆E的方程.
【答案】(1)(2)
【解析】
(1)因为,所以,则,所以,将P(1,)代入方程,得b2=1,所以a2=4,可得椭圆方程;
(2)设M(x1,y1),N(x2,y2),设y1<y2,因为,所以椭圆的方程为,MN的直线方程为x2,联立求解韦达定理,结合条件|MD|=2|ND|,可得y1=﹣2y2,所以解得,,代入根与系数关系,得b2=3,a2=12,求得椭圆E的方程.
(1)因为,所以,则,所以,
将P(1,)代入方程,得b2=1,所以a2=4,
所以椭圆E的标准方程为;
(2)设M(x1,y1),N(x2,y2),不妨设y1<y2,
因为,所以椭圆的方程为,MN的直线方程为x2,
联立,得,16y2+8y+12﹣12b2=0,
所以y1+y2,y1y2①.
因为|MD|=2|ND|,即y1=﹣2y2,所以,,
代入①,得b2=3,a2=12,
所以椭圆E的方程为.
科目:高中数学 来源: 题型:
【题目】如图,圆柱的轴截面是边长为2的正方形,点P是圆弧上的一动点(不与重合),点Q是圆弧的中点,且点在平面的两侧.
(1)证明:平面平面;
(2)设点P在平面上的射影为点O,点分别是和的重心,当三棱锥体积最大时,回答下列问题.
(i)证明:平面;
(ii)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列叙述正确的是( )
A.命题“p且q”为真,则恰有一个为真命题
B.命题“已知,则“”是“”的充分不必要条件”
C.命题都有,则,使得
D.如果函数在区间上是连续不断的一条曲线,并且有,那么函数在区间内有零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对任意x∈R,存在函数f(x)满足( )
A.f(cosx)=sin2xB.f(sin2x)=sinx
C.f(sinx)=sin2xD.f(sinx)=cos2x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)若,求的最大值;
(2)如果函数在公共定义域D上,满足,那么就称为的“伴随函数”.已知函数,.若在区间上,函数是的“伴随函数”,求实数的取值范围;
(3)若,正实数满足,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②在上是增函数或者减函数.
(1)若在区间上是闭函数,求常数的值;
(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com