精英家教网 > 高中数学 > 题目详情
定义域为的函数对任意都有,且其导函数满足,则当时,有( )
A.B.
C.D.
D

试题分析:因为定义域为的函数对任意都有,所以,函数图像关于x=2对称。又导函数满足,所以x>2时,>0,函数为增函数;x<2时,<0,函数为减函数。
时,,所以,即,故选C。
点评:典型题,本题综合考查了函数的图象和性质,导数应用于研究函数单调性,指数函数、对数函数的性质。考查覆盖面广,重点也突出,是一道难得的好题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数的图象
A.关于y轴对称B.关于x轴对称C.关于直线y=x对称D.关于原点对称

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是定义在上的函数,且,则值为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知是定义在上的偶函数,当时,
(1)求函数的解析式;
(2)若不等式的解集为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共10分)
已知函数
(1)解关于的不等式
(2)若函数的图象恒在函数图象的上方(没有公共点),求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)一艘轮船在航行中每小时的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时8元,而其他与速度无关的费用是每小时128元.
(1)求轮船航行一小时的总费用与它的航行速度(公里/小时)的函数关系式;
(2)问此轮船以多大的速度航行时,能使每公里的总费用最少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,在区间不是增函数的是(        )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数的定义域为,则实数a的取值范围为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知常数,函数
(1)求的值;   
(2)讨论函数上的单调性;
(3)求出上的最小值与最大值,并求出相应的自变量的取值.

查看答案和解析>>

同步练习册答案