精英家教网 > 高中数学 > 题目详情

设函数,其图象在点处的切线与直线垂直,导函数的最小值为

(Ⅰ)求的值;

(Ⅱ)求函数的单调递增区间,并求函数上的最大值和最小值.

 

【答案】

的最小值为最大值为

【解析】解:(1

由题意可得

          (2)        即

         令   得

所以上单调递增[

上单调递减k*s5u

(II)当时,上单调递减,在的单调递增

 

因此的最小值为最大值为

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x+18y-7=0垂直,导函数f′(x)的最小值为12.
(1)求a,b,c的值;
(2)设g(x)=
f(x)x2
,当x>0时,求g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
ax3+bx2+cx(a<b<c),其图象在点A(1,f(1)),B(m,f(m))处的切线的斜率分别为0,-a.
(1)求证:0≤
b
a
<1

(2)若函数f(x)的递增区间为[s,t],求|s-t|的取值范围;
(3)若当x≥k时(k是与a,b,c无关的常数),恒有f′(x)+a<0,试求k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax3+bx+c(a≠0)是定义在R上的奇函数,其图象在点(1,f(1))处的切线方程是6x+y+4=0.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12
(1)求a,b,c的值;
(2)求函数f(x)的单调增区间,并求函数f(x)在[-1,3]上的最大值和最小值
(3)若对任意x∈(0,m),都有f(x)<6x恒成立,求m的范围.

查看答案和解析>>

同步练习册答案