精英家教网 > 高中数学 > 题目详情
7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,短轴的一个端点到右焦点的距离为$\sqrt{3}$,过点(-1,0)且斜率为1的直线l与椭圆交于不同的两点A,B.
(1)求椭圆的标准方程;
(2)求弦|AB|的中点坐标.

分析 (1)由题意可得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{a=\sqrt{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解出即可得出;
(2)由点斜式得直线方程为y=x+1,设直线与椭圆相交于点A(x1,y1),B(x2,y2).与椭圆方程联立化为2x2+3x=0,由韦达定理可得x1+x2=-$\frac{3}{2}$.再利用中点坐标公式即可得出.

解答 解:(1)由题意可得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{a=\sqrt{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得b=1,
故椭圆的标准方程为:$\frac{{x}^{2}}{3}+{y}^{2}$=1.
(2)由点斜式得直线方程为y=x+1,设直线与椭圆相交于点A(x1,y1),B(x2,y2).
联立$\left\{\begin{array}{l}{y=x+1}\\{\frac{{x}^{2}}{3}+{y}^{2}=1}\end{array}\right.$,化为2x2+3x=0,
由韦达定理可得x1+x2=-$\frac{3}{2}$.
故中点横坐标x=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{3}{4}$,
代入直线方程可得中点纵坐标y=$\frac{1}{4}$.
∴弦AB的中点坐标为$(-\frac{3}{4},\frac{1}{4})$.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦的中点问题,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数y=3x-5的定义域用区间可表示为(-∞,+∞),函数y=$\frac{3-x}{2x+4}$的定义域用区间可表示为(-∞,-2)∪(-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}构成空间中的一个基底,$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$是$\overrightarrow{p}$=x1$\overrightarrow{a}$+y1$\overrightarrow{b}$+z1$\overrightarrow{c}$与$\overrightarrow{q}$=x2$\overrightarrow{a}$+y2$\overrightarrow{b}$+z2$\overrightarrow{c}$共线的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sinα=$\frac{1}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),求sin(α+β)和cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设椭圆的一个焦点与抛物线x2=8y的焦点相同,离心率为$\frac{1}{2}$,则此椭圆的标准方程为(  )
A.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1C.$\frac{{x}^{2}}{48}$+$\frac{{y}^{2}}{64}$=1D.$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若双曲线的顶点为椭圆x2+$\frac{y^2}{2}$=1长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程是$\frac{y^2}{2}-\frac{x^2}{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数$f(x)={log_{a+2}}(a{x^2}-3x+2)$的值域为R,则a的取值范围是$[0,\frac{9}{8}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图是偶函数y=f(x)的局部图象,根据图象所给信息,下列结论正确的是(  )
A.f(-2)-f(6)=0B.f(-2)-f(6)<0C.f(-2)+f(6)=0D.f(-2)-f(6)>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|}(x≠1)}\\{1(x=1)}\end{array}\right.$,若关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解,则b+c值为(  )
A.0B.1C.-1D.不能确定

查看答案和解析>>

同步练习册答案