【题目】如图,在三棱锥中,为的中点.
(1)证明:;
(2)若点在线段上,且直线与平面所成角的正弦值为,求直线与所成角的余弦值.
【答案】(1)证明见解析过程;(2).
【解析】
(1)利用勾股定理逆定理可以证明底面直角三角形的性质,结合侧棱相等,可以确定是底面的垂线,进而利用线面垂直的性质进行证明即可;
(2)由(1)中的线面垂直关系,可以证明出平面和平面互相垂直,根据面面垂直的性质定理,结合线面角的定义,可以求出的长,最后利用异面直线的定义进行求解即可.
(1)因为,所以有,所以三角形是直角三角形,而为斜边的中点.所以三角形的外心为点,因为,所以点在底面的射影是底面的外心,因此平面,而平面,因此有;
(2)由(1)可知:平面,而平面,所以平面平面,过作,垂足为,因为平面平面,所以平面,因为直线与平面所成角的正弦值为,所以,设,
所以,因此由,因此有
,根据,可得
或(舍去),故,因此点是线段的中点,取的中点,连接,则有,所以是直线与所成角(或补角),
因为,,所以,由余弦定理可知:.
科目:高中数学 来源: 题型:
【题目】设函数,
(1)求函数f(x)在x∈[﹣1,2]上的最大值和最小值;
(2)若对于任意x∈[﹣1,2]都有f(x)<m成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,,,平面PAB,D,E分别是AC,BC上的点,且平面PAB.
(1)求证平面PDE;
(2)若D为线段AC中点,求直线PC与平面PDE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为(其中α为参数),曲线C2:(x﹣1)2+y2=1,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1的普通方程和曲线C2的极坐标方程;
(2)若射线θ=(ρ>0)与曲线C1,C2分别交于A,B两点,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为常数)的图像与轴交于点,曲线在点处的切线斜率为.
(1)求的值及函数的极值;
(2)证明:当时,;
(3)证明:对任意给定的正数,总存在,使得当时,恒有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的多面体ABCDEF满足:正方形ABCD与正三角形FBC所在的两个平面互相垂直,FB∥AE且FB=2EA.
(1)证明:平面EFD⊥平面ABFE;
(2)若AB=2,求多面体ABCDEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱ABCD-A1B1C1D1中,AD//平面BCC1B1,AD⊥DB.求证:
(1)BC//平面ADD1A1;
(2)平面BCC1B1⊥平面BDD1B1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC中,角A,B,C所对的边分别为a,b,c,若(2b﹣c)cosA=acosC.
(1)求角A;
(2)若△ABC的外接圆面积为π,求△ABC的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com