精英家教网 > 高中数学 > 题目详情
在△ABC(如图1),若CE是∠ACB的平分线,则
AC
BC
=
AE
BE
.其证明过程如下:
作EG⊥AC于点G,EH⊥BC于点H,CF⊥AB于点F,
∵CE是∠ACB的平分线,
∴EG=EH.
又∵
AC
BC
=
AC•EG
BC•EH
=
S△AEC
S△BEC
AE
BE
=
AE•CF
BE•CF
=
S△AEC
S△BEC

AC
BC
=
AE
BE

(1)把上面结论推广到空间中:在四面体A-BCD中(如图2),平面CDE是二面角A-CD-B的角平分面,类比三角形中的结论,你得到的相应空间的结论是
S△ACD
S△BCD
=
AE
BE
S△ACD
S△BCD
=
AE
BE

(2)证明你所得到的结论.
分析:三角形的内角平分线定理类比到空间三棱锥,根据长度类比面积,从而得到
S△ACD
S△BCD
=
AE
BE
解答:解:在平面中在△ABC(如图1),若CE是∠ACB的平分线,则
AC
BC
=
AE
BE

将这个结论类比到空间:在四面体A-BCD中(如图2),平面CDE是二面角A-CD-B的角平分面,
则类比的结论为根据面积类比体积,长度类比面积可得:
S△ACD
S△BCD
=
AE
BE

证明:设点E到平面ACD、平面BCD的距离分别为h1、h2,则由平面CDE是二面角A-CD-B的角平分面,知h1=h2
S△ACD
S△BCD
=
h1S△ACD
h2S△BCD
=
VA-CDE
VB-CDE

S△ACD
S△BCD
=
AE
BE

故答案为:
S△ACD
S△BCD
=
AE
BE
点评:本题考查了类比推理,将平面中的性质类比到空间.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分别是AC、AB上的点,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.
(Ⅰ)求证:BC⊥平面A1DC;
(Ⅱ)若CD=2,求BE与平面A1BC所成角的正弦值;
(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)等边三角形ABC的边长为3,点D、E分别是边AB、AC上的点,且满足
AD
DB
=
CE
EA
=
1
2
(如图1).将△ADE沿DE折起到△A1DE的位置,使二面角A1-DE-B成直二面角,连结A1B、A1C (如图2).

(1)求证:A1D丄平面BCED;
(2)在线段BC上是否存在点P,使直线PA1与平面A1BD所成的角为600?若存在,求出PB的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC(如图1),若CE是∠ACB的平分线,则数学公式.其证明过程如下:
作EG⊥AC于点G,EH⊥BC于点H,CF⊥AB于点F,
∵CE是∠ACB的平分线,
∴EG=EH.
又∵数学公式数学公式
数学公式
(1)把上面结论推广到空间中:在四面体A-BCD中(如图2),平面CDE是二面角A-CD-B的角平分面,类比三角形中的结论,你得到的相应空间的结论是________
(2)证明你所得到的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC(如图1),若CE是∠ACB的平分线,则
AC
BC
=
AE
BE
.其证明过程如下:
作EG⊥AC于点G,EH⊥BC于点H,CF⊥AB于点F,
∵CE是∠ACB的平分线,
∴EG=EH.
又∵
AC
BC
=
AC•EG
BC•EH
=
S△AEC
S△BEC
AE
BE
=
AE•CF
BE•CF
=
S△AEC
S△BEC

AC
BC
=
AE
BE

(1)把上面结论推广到空间中:在四面体A-BCD中(如图2),平面CDE是二面角A-CD-B的角平分面,类比三角形中的结论,你得到的相应空间的结论是______
(2)证明你所得到的结论.

精英家教网

查看答案和解析>>

同步练习册答案