精英家教网 > 高中数学 > 题目详情
(1)已知平面上两定点A(-2,0)、B(2,0),且动点M的坐标满足=0,求动点M的轨迹方程;
(2)若把(1)的M的轨迹图象向右平移一个单位,再向下平移一个单位,恰与直线x+ky-3=0 相切,试求实数k的值;
(3)如图1,l是经过椭圆长轴顶点A且与长轴垂直的直线,E、F是两个焦点,点P∈l,P不与A重合.若∠EPF=α,证明:.类比此结论到双曲线,l是经过焦点F且与实轴垂直的直线,A、B是两个顶点,点P∈l,P不与F重合(如图2).若∠APB=α,试求角α的取值范围.

【答案】分析:(1)设点M为(x,y),利用坐标表示向量,代入题目中的条件得x2+y2=4,即得到点M的轨迹方程.
(2)由题意图象向右平移一个单位,再向下平移一个单位得到新的圆的方程(x-1)2+(y+1)2=4,根据其与直线x+ky-3=0 相切可得k=0或
(3)由题得α=∠EPA-∠FPA,所以tanα=tan(∠EPA-∠FPA),可得;类比椭圆的证明方法得到双曲线
的类似的性质
解答:解:(1)设M(x,y),
得x2+y2=4,
此即点M的轨迹方程.…(3分)
(2)将x2+y2=4向右平移一个单位,再向下平移一个单位后,
得到圆(x-1)2+(y+1)2=4…(5分)
依题意有,得k=0或…(8分)
(3)(ⅰ)证明:不妨设点P在A的上方,并设P(a,t)(t>0),
…(10分)
所以…(12分)
所以.显然α为锐角,即:…(14分)
(ⅱ)不妨设点P在F的上方,并设P(c,t)(t>0),

所以
由于tanα>0且,α为锐角,故.…(18分)
点评:本题的考点是直线与圆锥曲线的位置关系,主要考查轨迹方程的求解,考查图象变换,考查直线与圆的位置关系,解题的关键是把向量条件坐标化,熟练掌握直线与圆的位置关系以及椭圆与双曲线的几何性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面上两个定点M
(0,-2)
N
(0,2)
,P为一个动点,且满足
MP
MN
=
|
PN
|•|
MN
|

(1)求动点P的轨迹C的方程;
(2)若A、B是轨迹C上的两个不同动点
AN
NB
.分别以A、B为切点作轨迹C的切线,设其交点为Q,证明
NQ
AB
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上的动点P(x,y)及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是 k1,k2k1k2=-
1
4

(1)求动点P的轨迹C的方程;
(2)设直线l:y=kx+m与曲线C交于不同的两点M,N.
①若OM⊥ON(O为坐标原点),证明点O到直线l的距离为定值,并求出这个定值
②若直线BM,BN的斜率都存在并满足kBMkBN=-
1
4
,证明直线l过定点,并求出这个定点.

查看答案和解析>>

科目:高中数学 来源:2007年北京市东城区高考数学一模试卷(理科)(解析版) 题型:解答题

已知平面上两个定点,P为一个动点,且满足
(1)求动点P的轨迹C的方程;
(2)若A、B是轨迹C上的两个不同动点.分别以A、B为切点作轨迹C的切线,设其交点为Q,证明为定值.

查看答案和解析>>

科目:高中数学 来源:东城区一模 题型:解答题

已知平面上两个定点M
(0,-2)
N
(0,2)
,P为一个动点,且满足
MP
MN
=
|
PN
|•|
MN
|

(1)求动点P的轨迹C的方程;
(2)若A、B是轨迹C上的两个不同动点
AN
NB
.分别以A、B为切点作轨迹C的切线,设其交点为Q,证明
NQ
AB
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上两定点M(0,-2),N(0,2),P为一动点,满足

(1)求动点P的轨迹C的方程;

(2)若A、B是轨迹C上的两个不同动点,且,分别以A、B为切点作轨迹C的切线,设其交点为Q。证明:为定值。

查看答案和解析>>

同步练习册答案