【题目】已知函数f(x)= sinx+cosωx(ω>0)的图象与x轴交点的横坐标依次构成一个公差为 的等差数列,把函数f(x)的图象沿x轴向左平移 个单位,得到函数g(x)的图象,则( )
A.g(x)是奇函数
B.g(x)关于直线x=﹣ 对称
C.g(x)在[ , ]上是增函数
D.当x∈[ , ]时,g(x)的值域是[2,1]
【答案】D
【解析】解:f(x)= sinx+cosωx(ω>0),
化简得:f(x)=2sin(x+ ),
∵图象与x轴交点的横坐标依次构成一个公差为 的等差数列,可知周期为π
∴T=π= ,解得ω=2.
那么:f(x)=2sin(2x+ ),图象沿x轴向左平移 个单位,得:2sin[2(x+ )+ ]=2cos2x.
∴g(x)=2cos2x,故g(x)是偶函数,在区间[0, ]单调减函数.所以A,C不对.
对称轴方程为x= (k=Z),检验B不对.
当x∈[ , ]时,那么2x∈[ , ],g(x)的最大值为1,最小值为﹣2,故值域为[﹣2,1].D正确.
故选:D.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2–2x+2.
(1)求函数f(x)的解析式;
(2)当x∈[m,n]时,f(x)的取值范围为[2m,2n],试求实数m,n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某市年月日至日的空气质量指数趋势图,某人随机选择年月日至月日中的某一天到达该市,并停留天.
(1)求此人到达当日空气质量指数大于的概率;
(2)设是此人停留期间空气质量指数小于的天数,求的分布列与数学期望;
(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体ABCD-A′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥.求:
(1)三棱锥A′-BC′D的表面积与正方体表面积的比值;
(2)三棱锥A′-BC′D的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某贫困地区有1500户居民,其中平原地区1050户,山区450户,为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元)
(I)应收集多少户山区家庭的样本数据?
(Ⅱ)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为, , , ,,.如果将频率率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;
(Ⅲ)样本数据中,由5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
超过2万元 | 不超过2万元 | 总计 | |
平原地区 | |||
山区 | 5 | ||
总计 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一张坐标纸上已作出圆及点,折叠此纸片,使与圆周上某点重合,每次折叠都会留下折痕,设折痕与直线的交点为,令点的轨迹为曲线.
(1)求曲线的方程;
(2)若直线与轨迹交于、两点,且直线与以为直径的圆相切,若,求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象过点.
(1)求的值并求函数的值域;
(2)若关于的方程有实根,求实数的取值范围;
(3)若函数,则是否存在实数,使得函数的最大值为?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价x(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.
(1)把y表示为x的函数;
(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数;
(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com