精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= (a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a的取值范围是( )
A.(0, ]
B.[ ]
C.[ ]∪{ }
D.[ )∪{ }

【答案】C
【解析】解:y=loga(x+1)+1在[0,+∞)递减,则0<a<1,

函数f(x)在R上单调递减,则:

解得,

由图象可知,在[0,+∞)上,|f(x)|=2﹣x有且仅有一个解,

故在(﹣∞,0)上,|f(x)|=2﹣x同样有且仅有一个解,

当3a>2即a> 时,联立|x2+(4a﹣3)x+3a|=2﹣x,

则△=(4a﹣2)2﹣4(3a﹣2)=0,

解得a= 或1(舍去),

当1≤3a≤2时,由图象可知,符合条件,

综上:a的取值范围为[ ]∪{ },

所以答案是:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种商品的市场需求量(万件)、市场供应量(万件)与市场价格(元/件)分别近似地满足下列关系: .当时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量.

(1)求平衡价格和平衡需求量;

(2)若该商品的市场销售量(万件)是市场需求量和市场供应量两者中的较小者,该商品的市场销售额(万元)等于市场销售量与市场价格的乘积.

①当市场价格取何值时,市场销售额取得最大值;

②当市场销售额取得最大值时,为了使得此时的市场价格恰好是新的市场平衡价格,则政府应该对每件商品征税多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线过点P(﹣3 ,4),它的渐近线方程为y=± x.
(1)求双曲线的标准方程;
(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1||PF2|=41,求∠F1PF2的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 函数.

(1)求在区间上的最大值和最小值

(2)若 的值

3)若函数在区间上是单调递增函数求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,且ab=1,则函数f(x)=ax与函数g(x)=﹣logbx的图象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是一几何体的平面展开图,其中四边形为正方形 为全等的等边三角形 分别为的中点.在此几何体中下列结论中错误的为

A. 直线与直线共面 B. 直线与直线是异面直线

C. 平面平面 D. 与面的交线与平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log
(1)求f(x)的定义域;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆 上任取一点 ,点 轴的正射影为点 ,当点 在圆上运动时,动点 满足 ,动点 形成的轨迹为曲线
(Ⅰ)求曲线 的方程;
(Ⅱ)点 在曲线 上,过点 的直线 交曲线 两点,设直线 斜率为 ,直线 斜率为 ,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应国家扩大内需的政策,某厂家拟在2016年举行某一产品的促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用t(t≥0)万元满足x=4﹣ (k为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2016年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均生产投入成本的1.5倍(生产投入成本包括生产固定投入和生产再投入两部分).
(1)求常数k,并将该厂家2016年该产品的利润y万元表示为年促销费用t万元的函数;
(2)该厂家2016年的年促销费用投入多少万元时,厂家利润最大?

查看答案和解析>>

同步练习册答案