精英家教网 > 高中数学 > 题目详情
12.海曲市某中学的一个社会实践调查小组,在对中学生的良好“光盘习惯”的调查中,随机发放了120份问卷,对回收的100份有效问卷进行统计,得到如下2×2列联表:
做不到光盘能做到光盘合计
451055
301545
合计7525100
(Ⅰ)现已按是否能做到光盘分层从45份女生问卷中抽取了9份问卷,若从这9份问卷中随机抽取4份,并记录其中能做到光盘的问卷的份数为ξ,试求随机变量ξ的分布列和数学期望;
(Ⅱ)如果认为良好“光盘行动”与性别有关犯错误的概率不超过P,那么根据临界值表最精确的P的值应为多少?请说明理由.
附:独立性检验统计量Χ$\begin{array}{l}2\\{\;}\end{array}=\frac{{n(n\begin{array}{l}{\;}\\{11}\end{array}n\begin{array}{l}{\;}\\{22}\end{array}-n\begin{array}{l}{\;}\\{12}\end{array}n\begin{array}{l}{\;}\\{21}\end{array})\begin{array}{l}2\\{\;}\end{array}}}{{n\begin{array}{l}{\;}\\{1+}\end{array}n\begin{array}{l}{\;}\\{2+}\end{array}n\begin{array}{l}{\;}\\{+1}\end{array}n\begin{array}{l}{\;}\\{+2}\end{array}}},其中n=n\begin{array}{l}{\;}\\{11}\end{array}+n\begin{array}{l}{\;}\\{12}\end{array}+n\begin{array}{l}{\;}\\{21}\end{array}+n\begin{array}{l}{\;}\\{22}\end{array}$.
独立性检验临界值表:
P(X2≥k0)  
0.25
 
0.15
 
0.10
 
0.05
 
0.025
k0 
1.323
 
2.072
 
2.706
 
3841
 
5.024

分析 (Ⅰ)按是否能做到光盘分层从45份女生问卷中抽取了9份问卷,则抽取到做不到光盘的人数为6人,能做到光盘的人数为3人,由题意ξ的可能取值为0,1,2,3.分别求出相应的概率,由此能求出ξ的分布列和Eξ.
(Ⅱ)求出X2=$\frac{100}{33}≈3.03$,由2.706<3.03<3.841,得到能在犯错误的概率不超过0.10的前提下认为良好“光盘行动”与性别有关,即精确值应为0.10.

解答 解:(Ⅰ)按是否能做到光盘分层从45份女生问卷中抽取了9份问卷,
则抽取到做不到光盘的人数为:30×$\frac{9}{45}$=6人,能做到光盘的人数为:15×$\frac{9}{45}$=3人,
由题意ξ的可能取值为0,1,2,3.
P(ξ=0)=$\frac{{C}_{6}^{4}}{{C}_{9}^{4}}$=$\frac{5}{42}$,
P(ξ=1)=$\frac{{C}_{6}^{3}{C}_{3}^{1}}{{C}_{9}^{4}}$=$\frac{10}{21}$,
P(ξ=2)=$\frac{{C}_{6}^{2}{C}_{3}^{2}}{{C}_{9}^{4}}$=$\frac{5}{14}$,
P(ξ=3)=$\frac{1}{21}$,
ξ的分布列为:

ξ0123
P$\frac{5}{42}$$\frac{10}{21}$$\frac{5}{14}$$\frac{1}{21}$
∴Eξ=$0×\frac{5}{42}+1×\frac{10}{21}+2×\frac{5}{14}+3×\frac{1}{21}$=$\frac{4}{3}$.
(Ⅱ)X2=$\frac{100(45×15-30×10)^{2}}{55×45×25×75}$=$\frac{100}{33}≈3.03$,
∵2.706<3.03<3.841,
∴能在犯错误的概率不超过0.10的前提下认为良好“光盘行动”与性别有关,即精确值应为0.10.

点评 本题考查离散型随机变量的分布列及数学期望的求法,考查独立检验的应用,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知单位向量$\overrightarrow{{e}_{1}}$与$\overrightarrow{{e}_{2}}$的夹角为α,且cosα=-$\frac{1}{5}$,若$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线y=$\frac{1}{x}$过P(4,$\frac{1}{4}$)的切线方程为(  )
A.x+16y-8=0B.16x+y-8=0C.x-16y+8=0D.x+16y+8=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若y=0是曲线y=x3+bx+c的一条切线,则($\frac{b}{3}$)3+($\frac{c}{2}$)2=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知0≤x≤$\frac{π}{2}$,求函数y=sinx-2asinx的最大值M(a)与最小值m(a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=lnx-\frac{1}{4}x+\frac{3}{4x}-1$,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是[$\frac{17}{8}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}\right.$(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=$\frac{2cosθ}{si{n}^{2}θ}$
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.观察下列等式1=12,12-22=-3,12-22+32=6,12-22+32-42=-10照此规律,第100个等式12-22+32-42+…-1002=-5050.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足条件$\left\{\begin{array}{l}x-y≤0\\ x+y≥-2\\ x-2y≥-2\end{array}\right.$,则z=2x+y的最大值是(  )
A.10B.8C.6D.4

查看答案和解析>>

同步练习册答案