精英家教网 > 高中数学 > 题目详情
如果函数f(x)=sin(πx+θ)(0<θ<2π)的最小正周期是T,且当x=2时取得最大值,那么( )
A.T=2,θ=
B.T=1,θ=π
C.T=2,θ=π
D.T=1,θ=
【答案】分析:先根据三角函数周期公式求得T,再利用把x=2代入f(x)=sin(πx+θ)整理得f(x)=sinθ,进而可知当θ=取最大值.
解答:解:T==2,
又当x=2时,sin(π•2+θ)=sin(2π+θ)=sinθ,
要使上式取得最大值,可取θ=
故选A
点评:本题主要考查了三角函数的周期性问题.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).数列{an}满足f(an+1)=
1f(-2-an)
(n∈N*
(Ⅰ)求f(0)的值,判断并证明函数f(x)的单调性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得点(t,as)、(s,at)都在直线y=kx-1上,试判断是否存在自然数M,当n>M时,a n>f(0)恒成立?若存在,求出M的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
ax
+xlnx (a≥1),g(x)=x3-x2-3.(1)求函数g(x)=x3-x2-3的单调区间;
(2)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M,求满足上述条件的最大整数M;
(3)求证:对任意的s,t∈[1,2],都有f(s)≥g(t)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)设函数f(x)=
1
3
ax3+bx+cx(a≠0)
,已知a<b<c,且0≤
b
a
<1
,曲线y=f(x)在x=1处取极值.
(Ⅰ)如果函数f(x)的递增区间为[s,t],求|s-t|的取值范围;
(Ⅱ)如果当x≥k(k是与a,b,c无关的常数)时,恒有f(x)+a<0,求实数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数数学公式,已知a<b<c,且数学公式,曲线y=f(x)在x=1处取极值.
(Ⅰ)如果函数f(x)的递增区间为[s,t],求|s-t|的取值范围;
(Ⅱ)如果当x≥k(k是与a,b,c无关的常数)时,恒有f(x)+a<0,求实数k的最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南省永州市蓝山二中高三第四次联考数学试卷(理科)(解析版) 题型:解答题

设函数,已知a<b<c,且,曲线y=f(x)在x=1处取极值.
(Ⅰ)如果函数f(x)的递增区间为[s,t],求|s-t|的取值范围;
(Ⅱ)如果当x≥k(k是与a,b,c无关的常数)时,恒有f(x)+a<0,求实数k的最小值.

查看答案和解析>>

同步练习册答案