精英家教网 > 高中数学 > 题目详情

已知P(4,0)是圆x2+y2=36内的一点,AB是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.

x2+y2=56,这就是所求的轨迹方程.


解析:

AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.

又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)

又|AR|=|PR|=

所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0

因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动.

Q(x,y),R(x1,y1),因为RPQ的中点,所以x1=,

代入方程x2+y2-4x-10=0,得

-10=0

整理得:x2+y2=56,这就是所求的轨迹方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:044

如下图所示,已知P(40)是圆内的一点,AB是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知P(4,0)是圆x2+y2=36内的一点,AB是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.  

查看答案和解析>>

科目:高中数学 来源: 题型:

如图9-7,已知圆C:x2+y2=4,A(,0)是圆内一点。Q是圆上一动点,AQ的垂直平分线交OQ于P,当点Q在圆C上运动一周时,点P的轨迹为曲线E。

(1)求曲线E的方程;

(2)过点O作倾斜角为θ的直线与曲线E交于B1、B2两点,当θ在范围(0,)内变化时,求△AB1B2的面积S(θ)的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知P(4,0)是圆x2+y2=36内的一点,AB是圆上两动点,且满足,求点Q的轨迹方程

查看答案和解析>>

同步练习册答案