精英家教网 > 高中数学 > 题目详情

如图,是⊙0直径,是圆周上不同于的任意一点,平面,则四面体的四个面中,直角三角形的个数有(    )

 

 

A、个       B、个       C、个        D、

 

【答案】

A

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A(选修4-1:几何证明选讲)
如图,AB是⊙O的直径,C,F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D,连接CF交AB于点E.
求证:DE2=DB•DA.
B(选修4-2:矩阵与变换)
求矩阵
21
12
的特征值及对应的特征向量.
C(选修4-4:坐标系与参数方程)
已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是
x=-
3
5
t+2
y=
4
5
t
(t为参数).
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.
D(选修4-5:不等式选讲)
已知m>0,a,b∈R,求证:(
a+mb
1+m
)2
a2+mb2
1+m

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)如图,设圆O:x2+y2=a2的两条互相垂直的直径为AB、CD,E在弧BD上,AE交CD于K,CE交AB于L,求证:(
EK
AK
)2+(
EL
CL
)2
为定值
(2)将椭圆
x2
a2
+
y2
b2
=1
(a>b>0)与x2+y2=a2相类比,请写出与(1)类似的命题,并证明你的结论.
(3)如图,若AB、CD是过椭圆
x2
a2
+
y2
b2
=1
(a>b>0)中心的两条直线,且直线AB、CD的斜率积kABkCD=-
b2
a2
,点E是椭圆上异于A、C的任意一点,AE交直线CD于K,CE交直线AB于L,求证:(
EK
AK
)2+(
EL
CL
)2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,点F是椭圆W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点,A、B分别是椭圆的右顶点与上顶点,椭圆的离心率为
1
2
,三角形ABF的面积为
3
3
2

(Ⅰ)求椭圆W的方程;
(Ⅱ)对于x轴上的点P(t,0),椭圆W上存在点Q,使得PQ⊥AQ,求实数t的取值范围;
(Ⅲ)直线l:y=kx+m(k≠0)与椭圆W交于不同的两点M、N (M、N异于椭圆的左右顶点),若以MN为直径的圆过椭圆W的右顶点A,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:2010年普通高等学校招生全国统一考试、理科数学(湖北卷) 题型:022

设a>0,b>0,称ab的调和平均数.如图,C为线殴AB上的点,且ACaCBbOAB中点,以AB为直径作半圆.过点COD的垂线,垂足为E.连结ODADBD.过点COD的垂线,垂足为E.则图中线段OD的长度是ab的算术平均数,线段________的长度是ab的几何平均数,线段________的长度是ab的调和平均数.

查看答案和解析>>

同步练习册答案