精英家教网 > 高中数学 > 题目详情

【题目】中,分别为的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.

如图1 如图2

(1)证明:平面平面

(2)若平面平面,求直线与平面所成角的正弦值。

【答案】(1)见解析;(2)直线与平面所成角的正弦值为.

【解析】

(1)在题图1中,可证 ,在题图2中,平面.进而得到平面.从而证得平面平面

(2)可证得平面. .则以为坐标原点,分别以的方向为轴、轴、轴的正方向建立如图所示的空间直角坐标系,利用空间向量可求直线与平面所成角的正弦值.

(1)证明:在题图1中,因为,且的中点.由平面几何知识,得.

又因为的中点,所以

在题图2中,,且

所以平面

所以平面.

又因为平面

所以平面平面.

(2)解:因为平面平面,平面平面平面.

所以平面.

又因为平面

所以.

为坐标原点,分别以的方向为轴、轴、轴的正方向建立如图所示的空间直角坐标系

在题图1中,设,则.

.

所以.

为平面的法向量,

,即

,则.所以.

平面所成的角为

.

所以直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】实数ab满足ab>0ab,由ab按一定顺序构成的数列(  )

A. 可能是等差数列,也可能是等比数列

B. 可能是等差数列,但不可能是等比数列

C. 不可能是等差数列,但可能是等比数列

D. 不可能是等差数列,也不可能是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,边a、b、c分别是角A、B、C的对边,且满足bcosC=(3a-c)cosB

(1)求cosB

(2)若△ABC的面积为4,b=4,求△ABC的周长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20172月底,90多所自主招生试点高校将陆续出台2017年自主招生简章,某校高三年级选取了在期中考试中成绩优异的100名学生作为调查对象,对是否准备参加2017年的自主招生考试进行了问卷调查,其中准备参加”“不准备参加待定的人数如表:

准备参加

不准备参加

待定

男生

30

6

15

女生

15

9

25

(1)在所有参加调查的同学中,在三种类型中用分层抽样的方法抽取20人进行座谈交流,则在准备参加”“不准备参加待定的同学中应各抽取多少人?

(2)准备参加的同学中用分层抽样方法抽取6,从这6人中任意抽取2,求至少有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若直线与曲线的交点的横坐标为,且,求整数所有可能的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点.求证:

(1)DE=DA;

(2)平面BDM⊥平面ECA;

(3)平面DEA⊥平面ECA.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是首项的等差数列,设.

(1)求证:是等比数列;

(2)记,求数列的前项和

(3)在(2)的条件下,记,若对任意正整数,不等式恒成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为梯形,.的中点,底面在平面上的正投影为点,延长于点.

(1)求证:中点;

(2)若,在棱上确定一点,使得平面,并求出与面所成角的正弦值.

查看答案和解析>>

同步练习册答案