精英家教网 > 高中数学 > 题目详情

【题目】设函数

1讨论的单调性;

(2)当时, ,求的取值范围.

【答案】1见解析2

【解析】试题分析:(1根据,对字母a分类讨论,求出函数的单调区间;2时,分离参数,转化为分别求的最小值,及的最大值,利用导数,求其最大值即可.

试题解析:1

,则,在单调递增.若,当时, ;当时, .于是单调递减,在单调递增.

(2)方法1时,

因为函数单调递增所以

单调递增 单调递减.故 所以综上, 的取值范围为

(2)方法2,则当时,

,得

,当时, 单调递增,所以

,当时, 单调递增,故.因为,所以

,由 ,知存在唯一零点,设为,则

时, 单调递减;当时, 单调递增;故有最小值

由(1)得单调递减,所以

综上, 的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn,且Sn=4an﹣p,其中p是不为零的常数.

(1)证明:数列{an}是等比数列;

(2)当p=3时,若数列{bn}满足bn+1=bn+an(nN*),b1=2,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 分别为的中点, .

(1)求证: 平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

时,求函数的单调区间;

对任意的 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在四棱锥平面平面 的中点.

(Ⅰ)证明: 平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知两个正方形ABCDDCEF不在同一平面内,MN分别为ABDF的中点.

(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值;

(2)用反证法证明:直线MEBN是两条异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的导函数f′(x),且对任意x>0,都有f′(x)>.

(1)判断函数F(x)=在(0,+∞)上的单调性;

(2)设x1x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1x2);

(3)请将(2)中结论推广到一般形式,并证明你所推广的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)求的单调区间.

)证明:当时,方程在区间上只有一个零点.

)设,其中恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市高中全体学生参加某项测评,按得分评为两类(评定标准见表1).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为的学生中有40%是男生,等级为的学生中有一半是女生.等级为的学生统称为类学生,等级为的学生统称为类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图,

类别

得分(

表1

(I)已知该市高中学生共20万人,试估计在该项测评中被评为类学生的人数;

(Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名类学生”的概率;

(Ⅲ)在这10000名学生中,男生占总数的比例为51%, 类女生占女生总数的比例为 类男生占男生总数的比例为,判断的大小.(只需写出结论)

查看答案和解析>>

同步练习册答案