精英家教网 > 高中数学 > 题目详情

【题目】下面几种推理过程是演绎推理的是 ( ).

A. 某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人

B. 由三角形的性质,推测空间四面体的性质

C. 平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分

D. 在数列{an}中,a1=1,,,,由此归纳出{an}的通项公式

【答案】C

【解析】分析:根据归纳推理、类比推理、演绎推理得概念判断选择.

详解:某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人,这个是归纳推理;

由三角形的性质,推测空间四面体的性质,是类比推理;

平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分,是演绎推理;

在数列{an}中,a1=1,,,,由此归纳出{an}的通项公式,是归纳推理,因此选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面四边形中, ,将沿折起,使得平面平面,如图.

(1)求证:

(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F﹣BE﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1 , CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个正方体图形中,为正方体的两个顶点,分别为其所在棱的中点,能得出平面的图形的序号是(  )

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.

(Ⅰ)若抽取后又放回,抽3次.

(ⅰ)分别求恰2次为红球的概率及抽全三种颜色球的概率;

(ⅱ)求抽到红球次数的数学期望及方差.

(Ⅱ)若抽取后不放回,写出抽完红球所需次数的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,空间四边形ABCD中,AB=CD,AB⊥CD,E、F分别为BC、AD的中点,则EF和AB所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,AE⊥平面ABC,CD∥AE,F是BE的中点,AC=BC=1,∠ACB=90°,AE=2CD=2.
证明DF⊥平面ABE;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2,A1A=4,A1E=
(Ⅰ)证明:A1D⊥平面A1BC;
(Ⅱ)求二面角A﹣BD﹣B1的平面角的正弦值.

查看答案和解析>>

同步练习册答案