精英家教网 > 高中数学 > 题目详情
下列三个结论中
①命题p:“对于任意的x∈R,都有x2≥0”,则?p为“存在x∈R,使得x2<0”;②某人5 次上班途中所花的时间(单位:分钟)分别为8、10、11、9、x.已知这组数据的平均数为10,则其方差为2;③若函数f(x)=x2+2ax+2在区间(-∞,4]上是减函数,则实数a的取值范围是(-∞,-4).你认为正确的结论序号为______.
①∵命题p:对于任意的x∈R,都有x2≥0,
∴命题p的否定是“存在x∈R,使得x2<0”正确;
②:由平均数的公式得:(8+10+11+9+x)÷5=10,解得x=12;
∴方差=[(8-10)2+(10-10)2+(11-10)2+(9-10)2+(12-10)2]÷5=2.正确;
③:二次函数y=x2+2ax+2是开口向上的二次函数
对称轴为x=-a,
∴二次函数y=y=x2+2ax+2在(-∞,-a]上是减函数
∵函数y=x2+2ax+2在区间(-∞,4]上是减函数,
∴-a≥4,解得a≤-4,错.
故答案为:①②.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC的三个内角A、B、C的对边的长分别为a、b、c,有下列两个条件:(1)a、b、c成等差数列;(2)a、b、c成等比数列,现给出三个结论:
(1)0<B≤
π
3

(2)acos2
C
2
+ccos2
A
2
=
3b
2

(3)1<
1+sin2B
cosB+sinB
2

请你选取给定的两个条件中的一个条件为条件,三个结论中的两个为结论,组建一个你认为正确的命题,并证明之.
(I)组建的命题为:已知
 

求证:①
 

 

(II)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•陕西一模)下列三个结论中
①命题p:“对于任意的x∈R,都有x2≥0”,则?p为“存在x∈R,使得x2<0”;②某人5 次上班途中所花的时间(单位:分钟)分别为8、10、11、9、x.已知这组数据的平均数为10,则其方差为2;③若函数f(x)=x2+2ax+2在区间(-∞,4]上是减函数,则实数a的取值范围是(-∞,-4).你认为正确的结论序号为
①②
①②

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

下列三个结论中
①命题p:“对于任意的x∈R,都有x2≥0”,则?p为“存在x∈R,使得x2<0”;②某人5 次上班途中所花的时间(单位:分钟)分别为8、10、11、9、x.已知这组数据的平均数为10,则其方差为2;③若函数f(x)=x2+2ax+2在区间(-∞,4]上是减函数,则实数a的取值范围是(-∞,-4).你认为正确的结论序号为________.

查看答案和解析>>

科目:高中数学 来源:2010年陕西省五校高考数学一模试卷(文科)(解析版) 题型:解答题

下列三个结论中
①命题p:“对于任意的x∈R,都有x2≥0”,则¬p为“存在x∈R,使得x2<0”;②某人5 次上班途中所花的时间(单位:分钟)分别为8、10、11、9、x.已知这组数据的平均数为10,则其方差为2;③若函数f(x)=x2+2ax+2在区间(-∞,4]上是减函数,则实数a的取值范围是(-∞,-4).你认为正确的结论序号为   

查看答案和解析>>

同步练习册答案