精英家教网 > 高中数学 > 题目详情
6.已知抛物线E:x2=2py(p>0),直线y=kx+2与E交于A,B两点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,其中O为原点.
(1)求抛物线E的方程;
(2)当 k=1时,求弦长|AB|

分析 (1)将直线方程代入椭圆方程,由韦达定理及向量数量积的坐标运算,即可求得p,求得抛物线方程;
(2)由(1)可知,利用弦长公式即可求得弦长|AB|.

解答 解:(1)设A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{{x}^{2}=2py}\\{y=kx+2}\end{array}\right.$,整理得x2-2pkx-4p=0,
其中△=4p2k2+16p>0,
则x1+x2=2pk,x1x2=-4p,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=x1x2+$\frac{{x}_{1}^{2}}{2p}$•$\frac{{x}_{2}^{2}}{2p}$=-4p+4,
由已知,-4p+4=2,解得p=$\frac{1}{2}$,
∴抛物线E的方程为x2=y;
(2)由(1)可知:x1+x2=1,x1x2=-2,
则丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=3$\sqrt{2}$,
弦长|AB|=3$\sqrt{2}$.

点评 本题考查直线与抛物线的位置关系,考查抛物线的标准方程,韦达定理,弦长公式及向量数量积的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(x+1)lnx-a(x-1)(a∈R)
(1)当a=0时,求f(x)的单调区间;
(2)若f(x)≥0对任意x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知$cos(\frac{π}{6}-α)=\frac{{\sqrt{3}}}{2}$求$cos(\frac{5}{6}π+α)-{sin^2}(-α+\frac{7π}{6})$的值.
(2)若cosα=$\frac{2}{3}$,α是第四象限角,求$\frac{sin(α-2π)+sin(-α-3π)cos(α-3π)}{cos(π-α)-cos(-π-α)cos(α-4π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某高校调查询问了56名男女大学生在课余时间是否参加运动,得到下表所示的数据.从表中数据分析,有多大把握认为大学生的性别与参加运动之间有关系.
参加运动不参加运动合计
男大学生20828
女大学生121628
合计322456

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆的一般方程为x2+y2-2x+4y+3=0,则圆心C的坐标与半径分别是(  )
A.(1,-2),r=2B.(1,-2),$r=\sqrt{2}$C.(-1,2),r=2D.(-1,2),$r=\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,A=60°,B=45°,$b=\sqrt{6}$,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)在点x0附近有定义,且有f(x0+△x)-f(x0)=a△x+b(△x)2,其中a,b为常数,则(  )
A.f'(x)=aB.f'(x)=bC.f'(x0)=aD.f'(x0)=b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的函数f(x)既是奇函数又是周期函数.若f(x)的最小正周期是π,且当$x∈[0,\frac{π}{2}]$时,f(x)=sinx,则$f(\frac{5}{3}π)$的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知正三棱柱ABC-A1B1C1的六个顶点在球O1上,又知球O2与此正三棱柱的5个面都相切,求球O1与球O2的表面积之比(  )
A.5:1B.2:1C.4:1D.$\sqrt{3}$:1

查看答案和解析>>

同步练习册答案