精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(Ⅰ)若函数上为减函数,求的最小值;

(Ⅱ)若函数为自然对数的底数),,对于任意的,恒有成立,求的范围.

【答案】(Ⅰ);(Ⅱ) .

【解析】试题分析:(Ⅰ)先将函数单调递减问题转化为导函数非正恒成立问题,再根据一元二次不等式恒成立充要条件,转化为对应区间端点值非正,最后解不等式可得的取值范围,进而确定的最小值;(Ⅱ)先将不等式恒成立问题转化为对应函数最值问题: ,利用导数可求得,转化为不等式恒成立,易得.

试题解析:(Ⅰ)

所以上恒成立

所以上恒成立

,所以

所以 的最小值为

(Ⅱ)

,则

化简得,解得

所以

时, 单调递增

时, 单调递减

又因为,所以当时,

,即恒成立

因为,所以,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某批零件共160其中一级品有48二级品有64三级品有32等外品有16个.从中抽取一个容量为20的样本.试简要叙述用简单随机抽样、系统抽样、分层抽样法进行抽样都是等可能抽样.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】调查在级风的海上航行中71名乘客的晕船情况,在男人中有12人晕船,25人不晕船,在女人中有10人晕船,24人不晕船

(1)作出性别与晕船关系的列联表;

(2)根据此资料,能否在犯错误的概率不超过0.1的前提下认为级风的海上航行中晕船与性别有关?

晕船

不晕船

总计

男人

女人

总计

附:.

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有六间不同的电脑室,每天晚上至少开放两间,欲求不同安排方案的种数,现有3位同学分别给出了下列三个结果:①;②26-7;③,其中正确的结论是(  )

A. 仅有① B. 仅有② C. ②与③ D. 仅有③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为其导函数.

(1) 设,求函数的单调区间;

(2) 若, 设 为函数图象上不同的两点,且满足,设线段中点的横坐标为 证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数,整数

(1)证明:当时,

(2)数列满足 ,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求的单调区间;

(Ⅱ)若的图象与的图象有3个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.

(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?

(2)每名学生都被随机分配到其中的一个公园,设分别表示5名学生分配到王城公园和牡丹公园的人数,记,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点的直线相交于两点,点关于轴的对称点为.

(Ⅰ)证明:点在直线上;

(Ⅱ)设,求的内切圆的方程.

查看答案和解析>>

同步练习册答案