精英家教网 > 高中数学 > 题目详情

已知
(1)求的单调区间;
(2)求函数上的最值.

(1)函数的单调递增区间是,单调递减区间是;(2)上的最大值是,最小值是.

解析试题分析:(1)先根据导数公式,确定,进而计算出,然后通过求导,求解不等式并结合函数的定义域,即可得到的单调区间;(2)根据(1)的单调性,分别求出在区间的极值、端点值,然后进行比较大小,最大的为最大值,最小的为最小值,问题就得以解决.
试题解析:依题意得,,定义域是
(1)
,得
,得
由于定义域是
函数的单调递增区间是,单调递减区间是
(2)令,从中解得(舍去),
由于
上的最大值是,最小值是.
考点:1.定积分的计算;2.函数的单调性与导数;3.函数的最值与导数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数上是减函数,在上是增函数,函数上有三个零点,且是其中一个零点.
(1)求的值;
(2)求的取值范围;
(3)设,且的解集为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间和极值;
(2)设,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)当时,讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值2
(1)求函数的表达式;
(2)当满足什么条件时,函数在区间上单调递增?
(3)若图象上任意一点,直线与的图象相切于点P,求直线的斜率的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求函数的最大值;
(2)设,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数),在时取得极值.
(1)求实数的值;
(2)当时,求函数的最小值;
(3)当时,试比较的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当在区间上的最大值和最小值;
(Ⅱ)若在区间上,函数的图象恒在直线下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调区间;
(2)若函数满足:
①对任意的,当时,有成立;
②对恒成立.求实数的取值范围.

查看答案和解析>>

同步练习册答案