【题目】一个盒子中有5只同型号的灯泡,其中有3只一等品,2只二等品,现在从中依次取出2只,设每只灯泡被取到的可能性都相同,请用“列举法”解答下列问题:
(Ⅰ)求第一次取到二等品,且第二次取到的是一等品的概率;
(Ⅱ)求至少有一次取到二等品的概率.
【答案】(Ⅰ);(Ⅱ).
【解析】
列举出所有的基本事件,共有20个, (I)从中查出第一次取到二等品,且第二次取到的是一等品的基本事件数共有6个,利用古典概型的概率公式可得结果;(II)事件“至少有一次取到二等品”的对立事件是“取到的全是一等品”,“取到的全是一等品”包括了6个事件,“至少有一次取到二等品”取法有14种, 利用古典概型的概率公式可得结果.
(I)令3只一等品灯泡分别为;2只二等品灯泡分别为.
从中取出只灯泡,所有的取法有20种,分别为:,,,,,,,,,,,
第一次取到二等品,且第二次取到的是一等品取法有6种,
分别为,故概率是;
(II)事件“至少有一次取到二等品”的对立事件是“取到的全是一等品”,
“取到的全是一等品”包括了6种分别为,
故“至少有一次取到二等品”取法有14种,事件“至少有一次取到二等品”的概率是.
科目:高中数学 来源: 题型:
【题目】已知袋中装有红球,黑球共7个,若从中任取两个小球(每个球被取到的可能性相同),其中恰有一个红球的概率为.
(1)求袋中红球的个数;
(2)若袋中红球比黑球少,从袋中任取三个球,求三个球中恰有一个红球的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的左、右焦点分别为、,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1.
Ⅰ求椭圆C的方程;
Ⅱ点为椭圆C上一动点,连接,,设的角平分线PM交椭圆C的长轴于点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)直线(为参数)与曲线交于两点,与轴交于,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合 ,如果存在的子集,,同时满足如下三个条件:
①;
②,,两两交集为空集;
③,则称集合具有性质.
(Ⅰ) 已知集合,请判断集合是否具有性质,并说明理由;
(Ⅱ)设集合,求证:具有性质的集合有无穷多个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com