已知函数f(x)=ax+ln x(a∈R).
(1)若a=1,求曲线y=f(x)在x=处切线的斜率;
(2)求函数f(x)的单调区间;
(3)设g(x)=2x,若对任意x1∈(0,+∞),存在x2∈[0,1],使f(x1)<g(x2),
求实数a的取值范围.
解:(1)f′(x)=1+(x>0),f′()=1+2=3.
故曲线y=f(x)在x=处切线的斜率为3.
(2)f′(x)=a+=(x>0).
①当a≥0时,由于x>0,故ax+1>0,f′(x)>0,
所以f(x)的单调递增区间为(0,+∞);
②当a<0时,由f′(x)=0,得x=-,
在区间上f′(x)>0,在区间上f′(x)<0.所以,函数f(x)的单调递增区间为,单调递减区间为.
(3)由题可知,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),转化为[f(x)]max<[g(x)]max,而[g(x)]max=2.
由(2)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)
当a<0时,f(x)在上单调递增,在上单调递减,
故f(x)的极大值即为最大值,f=-1+ln=-1-ln(-a),所以2>-1-ln(-a),解得a<-.
所以,a的取值范围为
科目:高中数学 来源:2012-2013学年江西省南昌市高一5月联考数学卷(解析版) 题型:解答题
已知函数f(x)= (a、b为常数),且方程f(x)-x+12=0有两个实根为x1=3,x2=4.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式f(x)< .
查看答案和解析>>
科目:高中数学 来源:2015届辽宁盘锦市高一第一次阶段考试数学试卷(解析版) 题型:解答题
(12分)已知函数f(x)= (a,b为常数,且a≠0),满足f(2)=1,方程f(x)=x有唯一实数解,求函数f(x)的解析式和f[f(-4)]的值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省莱芜市高三上学期10月测试理科数学 题型:解答题
(本小题满分l2分)
已知函数f(x)=a-
(1)求证:函数y=f(x)在(0,+∞)上是增函数;
(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖南省十二校高三第一次联考数学文卷 题型:解答题
( (本小题满分13分)
已知函数f(x)=(a-1)x+aln(x-2),(a<1).
(1)讨论函数f(x)的单调性;
(2)设a<0时,对任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届黑龙江省高一期末考试文科数学 题型:解答题
(12分)已知函数f(X)=㏒a(ax-1) (a>0且a≠1)
(1)求函数的定义域 (2)讨论函数f(X)的单调性
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com