精英家教网 > 高中数学 > 题目详情
1.直线y=kx与曲线y=e|lnx|-|x-2|有3个公共点时,实数k的取值范围(  )
A.$(0,\frac{1}{e})$B.(0,1)C.(1,e]D.$(\frac{1}{e},1)$

分析 当 x≥2 时,曲线 y=2; 当2>x≥1 时,曲线 y=2x-2;当 1>x>0 时,曲线 y=$\frac{1}{x}$+x-2,如图所示:可得实数k的取值范围.

解答 解:当 x≥2 时,曲线 y=x-(x-2)=2;
当2>x≥1 时,曲线 y=x-(2-x)=2x-2;
当 1>x>0 时,曲线 y=$\frac{1}{x}$-(2-x)=$\frac{1}{x}$+x-2.
如图所示:
直线y=kx与曲线y=e|lnx|-|x-2|有3个公共点时,
实数k的取值范围是 0<k<1,
故选:B.

点评 本题考查直线和圆锥曲线的位置关系,体现了数形结合的数学思想,画出图形,是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设函数f(x)为偶函数,且f(1+x)=f(1-x),当x∈[0,1]时,f(x)=x2,$g(x)={x^{-\frac{2}{3}}}-\frac{1}{2}$,则函数F(x)=f(x)-g(x)的零点的个数为(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.我国古代数学名著《张邱建算经》有“分钱问题”:今有与人钱,初一人与三钱,次一人与四钱,次一人与五钱,以次与之,转多一钱,与讫,还敛聚与均分之,人得一百钱,问人几何?意思是:将钱分给若干人,第一人给3钱,第二人给4钱,第三人给5钱,以此类推,每人比前一人多给1钱,分完后,再把钱收回平均分给各人,结果每人分得100钱,问有多少人?则题中的人数是195.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知P(x,y)为平面区域$\left\{\begin{array}{l}x-y≥0\\ x+y≥0\\ a≤x≤a+1(a>0)\end{array}\right.$内的任意一点,当该区域的面积为3时,z=2x-y的最大值是(  )
A.6B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤$\frac{π}{2}$,|φ2|≤$\frac{π}{2}$.
命题?①:若直线x=φ是函数f(x)和g(x)的对称轴,则直线x=$\frac{1}{2}$kπ+φ(k∈Z)是函数g(x)的对称轴;
命题?②:若点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(${\frac{kπ}{4}$+φ,0)(k∈Z)是函数f(x)的中心对称.(  )
A.命题①②??都正确B.命题①②??都不正确
C.命题?①正确,命题?②不正确D.命题?①不正确,命题?②正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=(x+2a)ln(x+1)-2x,a∈R.
(1)当a=1时,求函数f(x)的单调区间及所有零点;
(2)设A(x1,y1),B(x2,y2),C(x3,y3)为函数g(x)=f(x)+x2-xln(x+1)图象上的三个不同点,且x1+x2=2x3.问:是否存在实数a,使得函数g(x)在点C处的切线与直线AB平行?若存在,求出所有满足条件的实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在R上的函数f(x)的导函数为f'(x),已知xf'(x)+f(x)<-f'(x),f(2)=$\frac{1}{3}$,则不等式f(ex-2)-$\frac{1}{{{e^x}-1}}$<0(其中e为自然对数的底数)的解集为(  )
A.(0,ln4)B.(-∞,0)∪(ln4,+∞)C.(ln4,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=$\frac{\sqrt{x+1}}{x}$的定义域是(  )
A.[-1,+∞)B.[-1,0)C.(-1,+∞)D.[-1,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.袋中12个小球,分别有红球,黑球,黄球各若干个(这些小球除颜色外其他都相同),从中任取一球,得到红球的概率为$\frac{1}{3}$,得到黑球的概率比得到黄球的概率多$\frac{1}{6}$,则得到黑球、黄球的概率分别是$\frac{5}{12}$,$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案