精英家教网 > 高中数学 > 题目详情
已知各项均为正数的等比数列{an}中,a1=1,a3=4.
(I)求数列{an}的通项公式;
(II)设bn=
5
2
+log2an
,求数列{bn}的前n项和Sn
(III)比较
1
2
n3
+2(n∈N*)与(II)中Sn的大小,并说明理由.
(I)已知各项均为正数的等比数列{an}中,a1=1,a3=4,设公比为q,则由4=1×q2,可得q=2.
故等比数列{an}的通项公式为 an=1×2n-2=2n-1
(II)由于 bn=
5
2
+log2an
=
5
2
+(n-1)=n+
3
2
,数列{bn}为等差数列,且公差为1,故此数列的前n项和Sn =
n[
5
2
+(n+
3
2
)]
2
=
1
2
n(n+4).
(III)当n=1,或n=2时,经过检验,
1
2
n3
+2(n∈N*)与
1
2
n(n+4)相等,当n=3时,经过检验,
1
2
n3
+2>
1
2
n(n+4).
故当n≥3时,
1
2
n3
+2>
1
2
n(n+4).
这是因为当n比较大时,函数
1
2
n3
+2 的增长速度大于Sn =
1
2
n(n+4)的增长速度.
练习册系列答案
相关习题

科目:高中数学 来源:2011届本溪县高二暑期补课阶段考试数学卷 题型:解答题

(本题满分12分)已知各项均为正数的数列
的等比中项。
(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源:2013-2014学年河北省石家庄高三上学期调研考试文科数学试卷(解析版) 题型:选择题

已知各项均为正数的等比数列中,的等比中项为,则的最小值为(    )

A.16    B.8    C.    D.4

 

查看答案和解析>>

科目:高中数学 来源:2013届辽宁朝阳柳城高中高三上第三次月考理科数学试卷(解析版) 题型:解答题

 已知各项均为正数的数列

的等比中项。

(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

 

查看答案和解析>>

科目:高中数学 来源:2013届辽宁朝阳柳城高中高三上第三次月考文科数学试卷(解析版) 题型:解答题

(12分)已知各项均为正数的数列

的等比中项。

(1)求证:数列是等差数列;

(2)若的前n项和为Tn,求Tn

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年本溪县高二暑期补课阶段考试数学卷 题型:解答题

(本题满分12分)已知各项均为正数的数列

的等比中项。

(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

 

查看答案和解析>>

同步练习册答案