精英家教网 > 高中数学 > 题目详情
20.如图,在△ABC中,点E为AB边的中点,点F在AC边上,且CF=2FA,BF交CE于点M,设$\overrightarrow{AM}$=x$\overrightarrow{AE}$+y$\overrightarrow{AF}$,则x+y=$\frac{1}{5}$.

分析 分别在△AEM、△AFM中,由向量的加法法则利用算两次的方法,代入已知条件计算,即可得出结论.

解答 解:由图及向量的加法和减法可知:$\overrightarrow{AM}$=$\overrightarrow{AE}$+$\overrightarrow{EM}$,
由$\overrightarrow{EM}$与$\overrightarrow{EC}$共线,可设$\overrightarrow{EM}$=m$\overrightarrow{EC}$,∴$\overrightarrow{AM}$=(1-m)$\overrightarrow{AE}$+3m$\overrightarrow{AF}$;
同理可得$\overrightarrow{AM}$=(1-n)$\overrightarrow{AF}$+2n$\overrightarrow{AE}$;
又$\overrightarrow{AM}$=x$\overrightarrow{AE}$+y$\overrightarrow{AF}$,则$\left\{\begin{array}{l}{1-m=2n=x}\\{3m=1-n=y}\end{array}\right.$,解得x=$\frac{4}{5}$,y=$\frac{3}{5}$.
∴x-y=$\frac{1}{5}$.
故答案为$\frac{1}{5}$.

点评 本题考查平面向量基本定理的运用,充分理解向量的运算法则及共线的意义是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若△ABC的面积为$2\sqrt{3}$,BC=2,C=120°,则边AB=$2\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设点M(m,0)在椭圆$\frac{x^2}{16}+\frac{y^2}{12}=1$的长轴上,点P是椭圆上任意一点,当|MP|最小时,点P恰好落在椭圆的右顶点,则实数m的取值范围是[1,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为$ρsin(\frac{π}{6}-θ)=m$(m为常数),圆C的参数方程为$\left\{\begin{array}{l}x=-1+2sinα\\ y=\sqrt{3}+2sinα\end{array}$(α为参数)
(1)求直线l的直角坐标方程和圆C的普通方程;
(2)若圆心C关于直线l的对称点亦在圆上,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是(  )
A.3x-y+2=0B.3x+y+2=0C.x+3y+2=0D.x-3y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=log2(x2+ax)在(1,+∞)是增函数,则a的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U={0,1,2,3,4},集合M={0,2,3},∁UN={1,2,4},则M∩N等于(  )
A.{0,3}B.{0,2}C.{1,2,3}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示程序输出的结果是(  )
A.3,2B.2,2C.3,3D.2,3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-x2,若存在实数a,b,使f(x)在[a,b]上的值域为[$\frac{1}{b}$,$\frac{1}{a}$],则ab=$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

同步练习册答案