分析 (Ⅰ)通过设等差数列{an}的公差为d,利用a1+5d=13、2a1+4d=14计算可得首项与公差,进而可得结论;
(Ⅱ)通过(I)裂项可知bn=$\frac{1}{n}$-$\frac{1}{n+1}$,(n∈N*),并项相加即得结论.
解答 解:(Ⅰ)设等差数列{an}的公差为d,
∵a6=13,a2+a4=14,
∴a1+5d=13,2a1+4d=14,
解得:a1=3,d=2,
∴an=3+2(n-1)=2n+1,
Sn=3n+$\frac{n(n-1)}{2}$×2=n2+2n;
(Ⅱ)由(I)可知bn=$\frac{4}{({a}_{n}-1)({a}_{n+1}-1)}$=$\frac{4}{2n×2(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,(n∈N*),
∴Tn=b1+b2+…+bn
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.
点评 本题考查数列的通项及前n项和,裂项、并项相加是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | [-4,4] | B. | (-4,4) | C. | [-4,0)∪(0,4] | D. | (-∞,4)∪(4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com