精英家教网 > 高中数学 > 题目详情
6.已知f(x)在x0处可导,则$\underset{lim}{h→0}\frac{f({x}_{0}+h)-f({x}_{0})}{2h}$等于(  )
A.$\frac{1}{2}f′({x}_{0})$B.f′(x0C.2f′(x0D.4f′(x0

分析 把要求的式子变形为$\frac{1}{2}\lim_{h→0}\frac{f({x}_{0}+h)-f({x}_{0})}{h}$,再利用函数在某一点的导数的定义得出结论.

解答 解:$\lim_{h→0}\frac{f({x}_{0}+h)-f({x}_{0})}{2h}$=$\frac{1}{2}\lim_{h→0}\frac{f({x}_{0}+h)-f({x}_{0})}{h}$=$\frac{1}{2}f′({x}_{0})$,
故选:A.

点评 本题主要考查函数在某一点的导数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.给定集合A={a1,a2,a3,…,an}(n∈N*?,n≥3),定义ai+aj(1≤i<j≤n,i,j∈N*)中所有不同值的个数为集合A两元素和的容量,用L(A)表示,若A={2,4,6,8},则L(A)=5;若集合A={a1,a2,a 3,…,a 100},则L(A)的最小值为(  )
A.5050B.4950C.197D.195

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,该几何体的体积是(  )
A.12B.18C.24D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,网格纸的小正方形的边长是1,粗线画出的是一个几何体的三视图,则这个几何体的体积为(  )
A.$\frac{5}{2}$B.$\frac{7}{2}$C.2+$\frac{\sqrt{3}}{4}$D.3+$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知n∈N*,n>1,n个实数a1,a2,…,an 满足a1+a2+…+an=0,|a1|+|a2|+…+|an |=1.求证:|a1+2a2+3a3+…+n|an|≤$\frac{n-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$tanθ=\frac{3}{4}$,那么$tan(θ+\frac{π}{4})$等于(  )
A.-7B.$-\frac{1}{7}$C.7D.$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx,g(x)=ax2-x(a≠0).
(1)若函数y=f(x)与y=g(x)的图象在公共点P处有相同的切线,求实数a的值并求点P的坐标;
(2)若函数y=f(x)与y=g(x)的图象有两个不同的交点M、N,求实数a的取值范围;
(3)在(2)的条件下,过线段MN的中点作x轴的垂线分别与y=f(x)的图象和y=g(x)的图象交于S、T点,以S为切点作y=f(x)的切线l1,以T为切点作y=g(x)的切线l2,是否存在实数a使得l1∥l2,如果存在,求出a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱锥P-ABCD中,平面PAD⊥底面ABCD,PA⊥PD,PA=PD,BC∥AD,AB⊥AD,AD=2AB=2BC=2.
(1)直线PB与CD所成角的余弦值;
(2)求直线CD和平面PAB所成的角θ的大小.

查看答案和解析>>

同步练习册答案