精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax2﹣2ax+1+b(a>0)
(1)若f(x)在区间[2,3]上的最大值为4、最小值为1,求a,b的值;
(2)若a=1,b=1,关于x的方程f(|2x﹣1|)+k(4﹣3|2x﹣1|)=0,有3个不同的实数解,求实数k的值.

【答案】
(1)解:f(x)=a(x﹣1)2+1+b﹣a.

∵a>0,f(x)的对称轴为x=1,

可得f(x)在[2,3]上为增函数,

故f(2)=1,f(3)=4,

即1+b=1,3a+1+b=4,

解得a=1,b=0;


(2)解:由题意可得f(x)=x2﹣2x+2,

∴f(|2x﹣1|)+k(4﹣3|2x﹣1|)=0,

即为|2x﹣1|2﹣2|2x﹣1|+2+k(4﹣3|2x﹣1|)=0,

即|2x﹣1|2﹣(2+3k)|2x﹣1|+2(1+2k)=0,

令|2x﹣1|=t,则方程可化为t2﹣(2+3k)t+2(1+2k)=0(t≥0),

关于x的方程f(|2x﹣1|)+k(2﹣3|2x﹣1|)=0有3个不同的实数解,

结合t=|2x﹣1|的图象(如右图)可知,

方程t2﹣(2+3k)t+2(1+2k)=0有两个根t1,t2

且0<t1<1<t2或0<t1<1,t2=1,或0<t1<1,t2=0,

记h(t)=t2﹣(2+3k)t+2(1+2k),

即有k∈或k=﹣

解得k=﹣


【解析】(1)根据f(x)的开口方向和对称轴可知f(x)在[2,3]上是增函数,根据最值列出方程组解出a,b;(2)令|2x﹣1|=t,得到关于t的二次函数h(t),结合t=|2x﹣1|的函数图象可判断h(t)的零点分布情况,列出不等式组解出k的值.
【考点精析】认真审题,首先需要了解函数的最值及其几何意义(利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设圆x2+y2=12与抛物线x2=4y相交于A,B两点,F为抛物线的焦点,若过点F且斜率为1的直线l与抛物线和圆交于四个不同的点,从左至右依次为P1 , P2 , P3 , P4 , 则|P1P2|+|P3P4|的值 , 若直线m与抛物线相交于M,N两点,且与圆相切,切点D在劣弧 上,则|MF|+|NF|的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 + =1(a>b>0)的左右焦点F1 , F2其离心率为e= ,点P为椭圆上的一个动点,△PF1F2内切圆面积的最大值为
(1)求a,b的值
(2)若A、B、C、D是椭圆上不重合的四个点,且满足 =0,求| |+| |的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校进行社会实践,对岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在岁, 岁年龄段人数中,“时尚族”人数分别占本组人数的.

(1)求岁与岁年龄段“时尚族”的人数;

(2)从岁和岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在岁内的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且两焦点与短轴的一个端点的连线构成等腰直角三角形.

)求椭圆的方程.

)过定点的动直线,交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以为直径的圆恒过点.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=6,sinA= ,B=A+
(1)求b的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=的定义域为M.

(1)求M;

(2)当xM时,求g(x)=4x﹣2x+1+1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)是定义在(﹣∞,+∞)上的偶函数,x1 , x2∈[0,+∞)(x1≠x2),有 ,则(
A.f(3)<f(1)<f(﹣2)
B.f(1)<f(﹣1)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(﹣2)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布N(170.5,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第1组[157.5,162.5),第2组[162.5,167.5),…,第6组[182.5,187.5],如图是按上述分组方法得到的频率分布直方图.

(1)试评估该校高三年级男生的平均身高;
(2)求这50名男生身高在177.5cm以上(含177.5cm)的人数;
(3)在这50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的分布列和数学期望.
参考数据:若ξ~N(μ,σ2),则P(μ﹣σ<ξ≤μ+σ)=0.6826,P(μ﹣2σ<ξ≤μ+2σ)=0.9544,P(μ﹣3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

同步练习册答案