精英家教网 > 高中数学 > 题目详情
9.已知x1,x2是方程4x2-(3m-5)x-6m2=0的两根,且|$\frac{{x}_{1}}{{x}_{2}}$|=$\frac{3}{2}$,求m的值.

分析 利用韦达定理可得x1+x2=$\frac{3m-5}{4}$,x1•x2=$-\frac{3{m}^{2}}{2}≤0$,结合|$\frac{{x}_{1}}{{x}_{2}}$|=$\frac{3}{2}$,可得$\frac{{x}_{1}}{{x}_{2}}$=-$\frac{3}{2}$,进而得到答案.

解答 解:∵△=(3m-5)2+96m2>0恒成立,
故方程4x2-(3m-5)x-6m2=0必有两相异实根,
∴x1+x2=$\frac{3m-5}{4}$,x1•x2=$-\frac{3{m}^{2}}{2}≤0$,
即x1,x2不同号,
又∵|$\frac{{x}_{1}}{{x}_{2}}$|=$\frac{3}{2}$,
∴$\frac{{x}_{1}}{{x}_{2}}$=-$\frac{3}{2}$,
∴x1=$-\frac{3}{2}$x2
∴x1+x2=$-\frac{1}{2}$x2=$\frac{3m-5}{4}$,x1•x2=$-\frac{3}{2}{{x}_{2}}^{2}$=$-\frac{3{m}^{2}}{2}$,
解得:m=1,或m=5

点评 本题考查的知识点是一元二次方程根与系数的关系,熟练掌握韦达定理是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数y=lnx在点A(1,0)处的切线方程为(  )
A.x-1-0B.x+y-1=0C.x-y-1=0D.x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{|2x-1|,}&{x>0}\\{\frac{3}{2}x+2,}&{x≤0}\end{array}\right.$,若关于x的方程f(sinx)=m在区间[0,2π]上有四个不同的实数根,则实数m的取值范围是(  )
A.0<m<$\frac{1}{2}$B.0<m≤$\frac{1}{2}$C.$\frac{1}{2}$<m≤1D.$\frac{1}{2}$<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[-$\frac{π}{3}$,$\frac{π}{4}$]
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$及|$\overrightarrow{a}$+$\overrightarrow{b}$|;
(2)若f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-|$\overrightarrow{a}$+$\overrightarrow{b}$|,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=sin($\frac{4}{3}$x-sinx)在[0,π]上的值域为[-$\frac{\sqrt{3}}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x2+mx-10=(x+a)(x+b),其中a、b为整数,则m的值为(  )
A.3或9B.±3C.±9D.±3或±9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)在区间[-a,a]上具有二阶连续的导数,a>0,f(0)=0.证明:在(-a,a)内至少存在一点η,使a3f″(η)=3${∫}_{-a}^{a}f(x)dx$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求g(x)=(3-x)•(2x-1)($\frac{1}{2}<x<3$)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{blnx-a}{x}$(b≠0).
(1)求函数f(x)的单调区间;
(2)若b=1时,函数f(x)的图象与函数g(x)=1的图象在区间(0,e]上有公共点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案