精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P ABCD中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BC∥AD, AB⊥AD, ,O为AD中点.

(1)求直线与平面所成角的余弦值;
(2)求点到平面的距离;
(3)线段上是否存在一点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.
(1)与平面所成角的余弦值为;(2)点到平面的距离;(3)存在,.

试题分析: 思路一、由PA="PD," O为AD中点,侧面PAD⊥底面ABCD,可得PO⊥平面ABCD.
又在直角梯形中,易得所以可以为坐标原点,轴,轴,
轴建立空间直角坐标系,然后利用空间向量求解. 思路二、(1)易得平面,所以即为所求.(2)由于,从而平面,所以可转化为求点到平面.(3)假设存在,过Q作,垂足为,过,垂足为M,则即为二面角的平面角.设,利用求出,若,则存在,否则就不存在.
试题解析:(1) 在△PAD中PA="PD," O为AD中点,所以PO⊥AD,
又侧面PAD⊥底面ABCD, 平面平面ABCD="AD," 平面PAD,

所以PO⊥平面ABCD.
又在直角梯形中,易得;
所以以为坐标原点,轴,轴,
轴建立空间直角坐标系.
,,;
,易证:,
所以平面的法向量,

所以与平面所成角的余弦值为            .4分
(2),设平面PDC的法向量为
,取
点到平面的距离      .8分
(3)假设存在,且设.
因为
所以
设平面CAQ的法向量中,则
,得.
平面CAD的一个法向量为
因为二面角Q OC D的余弦值为,所以.
整理化简得:(舍去),
所以存在,且                    13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m和15m,从建筑物AB的顶部A看建筑物CD的张角

(1)求BC的长度;
(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的张角分别为,问点P在何处时,最小?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,AB=
2
AA1
,D是A1B1的中点,点E在A1C1上,且DE⊥AE.
(1)证明:平面ADE⊥平面ACC1A1
(2)求直线AD和平面ABC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点P在y=x2上,且点P到直线y=x的距离为,这样的点P的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线3x+4y-3=0与直线6x+my+14=0平行,则它们之间的距离为    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与直线的距离为              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点在平面内,其余顶点在的同侧,正方体上与顶点相邻的三个顶点到的距离分别为1,2和4,是正方体的其余四个顶点中的一个,则到平面的距离可能是:
①3;    ②4;   ③5;   ④6;   ⑤7
以上结论正确的为______________。(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

空间直角坐标系中,已知A(1,0,2),B(1,-3,1),点P在z轴上,且|PA|=|PB|,则点P的坐标为         .

查看答案和解析>>

同步练习册答案