精英家教网 > 高中数学 > 题目详情
如图所示,A∉平面α,AB、AC是平面α的两条斜线,O是A在平面α内的射影,AO=4,OC=
3
,BO⊥OC,∠OBA=30°,则C到AB的距离为______.
在Rt△AOB中,
∵AO=4,∠OBA=30°,
∴AB=8,OB=4
3

∵BO⊥OC,
在Rt△BOC中,由OC=
3

∴BC=
51

在Rt△AOC中,AC=
19

在△ABC中,cosB=
51+64-19
2•
51
•8
=
2
51
17

∴sinB=
85
17

则C到AB的距离为BC•sinB=
51
85
17
=
15

故答案为:
15
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

Rt△ABC两直角边分别为3、4,PO⊥面ABC,O是△ABC的内心,PO=
3
,则点P到△ABC的斜边AB的距离是(  )
A.
3
B.
2
2
C.
3
2
D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥O-ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA中点.
(1)求证:直线BD⊥平面OAC;
(2)求点A到平面OBD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体ABCD-A1B1C1D1的棱长为a,E为DD1的中点.
(1)求证:BD1平面EAC;
(2)求点D1到平面EAC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图示,在底面为直角梯形的四棱椎P-ABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2
3
,BC=6.
(1)求证:BD⊥平面PAC;
(2)求二面角A-PC-D的正切值;
(3)求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都为1,且两夹角为60°.
(1)求AC1的长;
(2)求BD1与AC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四面体的四个顶点都在表面积为36π的一个球面上,则这个正四面体的高等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,ABCD-A1B1C1D1为正方体,下面结论错误的序号是 ______.
①BD平面CB1D1
②AC1⊥BD;
③AC1⊥平面CB1D1
④异面直线AD与CB1所成角为60°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,空间四边形ABCD被一平面所截,截面EFGH是平行四边形.
(1)求证:CD平面EFGH;
(2)如果AB=CD=a,求证:四边形EFGH的周长为定值.

查看答案和解析>>

同步练习册答案