精英家教网 > 高中数学 > 题目详情

【题目】“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如下表所示:

价格x

5

5.5

6.5

7

销售量y

12

10

6

4

通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(Ⅰ)求销售量y对奶茶的价格x的回归直线方程;
(Ⅱ)欲使销售量为13杯,则价格应定为多少?
注:在回归直线y= 中, = =146.5.

【答案】解:(Ⅰ) = =6, = =8. =5×12+5.5×10+6.5×6+7×4=182,
=52+5.52+6.52+72=146.5,
= =﹣4, =8+4×6=32.
∴销售量y对奶茶的价格x的回归直线方程为 =﹣4x+32.
(Ⅱ)令﹣4x+32=13,解得x=4.75.
答:商品的价格定为4.75元
【解析】(1)根据回归系数公式计算回归系数;(2)把y=13代入回归方程计算x.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,CD和SC的中点.求证:

(1)直线EG∥平面BDD1B1
(2)平面EFG∥平面BDD1B1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司研究一款畅销保险产品的保费与销量之间的关系,根据历史经验,若每份保单的保费在元的基础上每增加元,对应的销量(万份)与(元)有较强线性相关关系,从历史销售记录中抽样得到如下的对应数据:

(1)试据此求出关于的线性回归方程

(2)若把回归方程当做的线性关系,试计算每份保单的保费定为多少元此产品的保费总收入最大,并求出该最大值;

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2 ,E是PB上任意一点.

(1)求证:AC⊥DE;
(2)已知二面角A﹣PB﹣D的余弦值为 ,若E为PB的中点,求EC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 (a>b>0)的离心率为 ,以该椭圆上的点和椭圆的左、右焦点F1 , F2为顶点的三角形的周长为 .一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.

(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2 , 证明k1k2=1;
(3)探究 是否是个定值,若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex1+x﹣2(e为自然对数的底数).g(x)=x2﹣ax﹣a+3.若存在实数x1 , x2 , 使得f(x1)=g(x2)=0.且|x1﹣x2|≤1,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,A(2,4),B(﹣1,2),C,D为动点,
(1)若C(3,1),求平行四边形ABCD的两条对角线的长度
(2)若C(a,b),且 ,求 取得最小值时a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A,B,C的对边长分别为a,b,c,R是△ABC的外接圆半径,有下列四个条件: ①(a+b+c)(a+b﹣c)=3ab
②sinA=2cosBsinC
③b=acosC,c=acosB

有两个结论:甲:△ABC是等边三角形.乙:△ABC是等腰直角三角形.
请你选取给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的导函数的图像与直线平行,且处取得极小值.设

(1)若曲线上的点到点的距离的最小值为,求的值;

(2)如何取值时,函数存在零点,并求出零点.

查看答案和解析>>

同步练习册答案