【题目】设函数 的定义域为集合 ,函数 的定义域为集合 .
(1)若 ,求实数 的取值范围;
(2)若 ,求实数 的取值范围.
【答案】
(1)解:可知集合 ,集合
若 ,则 ,即 ;
故实数 的取值范围是
(2)解:若 ,则 ,故实数 的取值范围是
【解析】(1)利用真数大于零求出集合A的解集,再利用分母不为零被开方数大于等于零求出集合B,结合子集的定义求出m的取值范围。(2)根据题意结合交集的运算性质即可求出结果。
【考点精析】解答此题的关键在于理解子集与真子集的相关知识,掌握任何一个集合是它本身的子集;n个元素的子集有2n个,n个元素的真子集有2n -1个,n个元素的非空真子集有2n-2个,以及对集合的交集运算的理解,了解交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.
科目:高中数学 来源: 题型:
【题目】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B为焦点且过点D的双曲线的离心率为e1 , 以C,D为焦点且过点A的椭圆的离心率为e2 , 若对任意x∈(0,1)不等式t<e1+e2恒成立,则t的最大值为( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 首项为a1且1,an , Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a2n+1)×(log2a2n+3),求数列 的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的离心率为 ,短轴一个端点到右焦点的距离为 . (Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为 ,求△AOB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)满足下列条件:在定义域内存在x0 , 使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)具有性质M;反之,若x0不存在,则称函数f(x)不具有性质M.
(1)证明:函数f(x)=2x具有性质M,并求出对应的x0的值;
(2)已知函数 具有性质M,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(x2+x+a)在(0,f(0))处的切线与直线2x﹣y﹣3=0平行,其中a∈R.
(1)求a的值;
(2)求函数f(x)在区间[﹣2,2]上的最值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com