精英家教网 > 高中数学 > 题目详情
有下列命题:
①函数y=cos(x+)是奇函数;
②函数f(x)=4sin的表达式可改写为f(x)=4cos
③若α、β是第一象限角且α<β,则tan α<tan β;
④函数y=sin(2x+)的图象关于直线x=成轴对称图形.
其中正确的是    (把你认为正确的命题序号都填上)
【答案】分析:①利用诱导公式将函数进行化简,然后判断函数的奇偶性.②利用诱导公式进行化简判断.③利用正切函数的性质判断.④利用三角函数的图象和性质判断.
解答:解:①因为y=cos(x+)=-sin,为奇函数,所以①正确.
②函数f(x)=4sin=,所以②正确.
③因为函数在定义域内部单调,所以③错误.
④当x=时,,所以直线x=是函数的一条对称轴,所以④正确.
故答案为:①②④.
点评:本题主要考查诱导公式以及三角函数的图象和性质.综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于函数f(x)=sin2x-cos2x有下列命题:
①函数y=f(x)的周期为π;
②直线x=
π
4
是y=f(x)的一条对称轴;
③点(
π
8
,0)
是y=f(x)的图象的一个对称中心;
④将y=f(x)的图象向左平移
π
4
个单位,可得到y=
2
sin2x
的图象.
其中真命题的序号是
①③
①③
.(把你认为真命题的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=lg
x2+1|x|
(x≠0,x∈R)有下列命题:
①函数y=f(x)的图象关于y 轴对称;
②在区间(-∞,0)上,函数y=f(x)是减函数;
③在区间(1,+∞)上,函数f(x)是增函数.
其中正确命题序号为
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①函数y=cos(x-
π
4
)cos(x+
π
4
)的图象中,相邻两个对称中心的距离为π;
②函数y=
x+3
x-1
的图象关于点(-1,1)对称;
③关于x的方程ax2-2ax-1=0有且仅有一个实数根,则实数a=-1;
④已知命题p:对任意的x∈R,都有sinx≤1,则非p:存在x∈R,使得sinx>1.
其中所有真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=lg(|x|+1)(x∈R)有下列命题:
①函数y=f(x)的图象关于y轴对称;
②在区间(-∞,0)上,函数y=f(x)是增函数;
③函数f(x)的最小值为0.
其中正确命题序号为
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=sin2x-cos2x有下列命题:
①函数y=f(x)的周期为π;                
②直线x=
π
4
是y=f(x)图象的一条对称轴;
点(
π
8
,0)
是y=f(x)图象的一个对称中心;
(-
π
8
8
)
是函数y=f(x)的一个单调递减区间.
其中真命题的序号是
①③
①③

查看答案和解析>>

同步练习册答案