【题目】北京某附属中学为了改善学生的住宿条件,决定在学校附近修建学生宿舍,学校总务办公室用1000万元从政府购得一块廉价土地,该土地可以建造每层1000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高0.02万元,已知建筑第5层楼房时,每平方米建筑费用为0.8万元.
(1)若学生宿舍建筑为层楼时,该楼房综合费用为万元,综合费用是建筑费用与购地费用之和),写出的表达式;
(2)为了使该楼房每平方米的平均综合费用最低,学校应把楼层建成几层?此时平均综合费用为每平方米多少万元?
【答案】(1);(2)学校应把楼层建成层,此时平均综合费用为每平方米万元
【解析】
由已知求出第层楼房每平方米建筑费用为万元,得到第层楼房建筑费用,由楼房每升高一层,整层楼建筑费用提高万元,然后利用等差数列前项和求建筑层楼时的综合费用;
设楼房每平方米的平均综合费用为,则,然后利用基本不等式求最值.
解:由建筑第5层楼房时,每平方米建筑费用为万元,
且楼房每升高一层,整层楼每平方米建筑费用提高万元,
可得建筑第1层楼房每平方米建筑费用为:万元.
建筑第1层楼房建筑费用为:万元.
楼房每升高一层,整层楼建筑费用提高:万元.
建筑第x层楼时,该楼房综合费用为:.
;
设该楼房每平方米的平均综合费用为,
则:,
当且仅当,即时,上式等号成立.
学校应把楼层建成10层,此时平均综合费用为每平方米万元.
【点睛】
本题考查简单的数学建模思想方法,训练了等差数列前n项和的求法,训练了利用基本不等式求最值,是中档题.
【题型】解答题
【结束】
20
【题目】已知.
(1)求函数的最小正周期和对称轴方程;
(2)若,求的值域.
科目:高中数学 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)若选取的是1月与6月的两组数据,请根据2月至5月份的数据,求出y关于x的线性回归方程=x+;
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想.
附:(参考数据)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,AB是⊙O的直径,VA 垂直于⊙O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是( )
A. MN∥AB B. MN与BC所成的角为45°
C. OC⊥平面VAC D. 平面VAC⊥平面VBC
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)的左、右焦点分别为F1、F2 , 椭圆C过点P(1, ),直线PF1交y轴于Q,且 =2 ,O为坐标原点.
(1)求椭圆C的方程;
(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1 , k2 , 且k1+k2=2,证明:直线AB过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(1,2),过点P(5,﹣2)的直线与抛物线y2=4x相交于B,C两点,则△ABC是( )
A.直角三角形
B.钝角三角形
C.锐角三角形
D.不能确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点M(x,y)满足,点M的轨迹为曲线E.
(1)求E的标准方程;
(2)过点F(1,0)作直线交曲线E于P,Q两点,交轴于R点,若,证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图像是由函数的图像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移个单位长度.
(Ⅰ)求函数的解析式,并求其图像的对称轴方程;
(Ⅱ)已知关于的方程在内有两个不同的解.
(1)求实数m的取值范围;
(2)证明:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】知双曲线 ﹣ =1(a>0,b>0),A1、A2是实轴顶点,F是右焦点,B(0,b)是虚轴端点,若在线段BF上(不含端点)存在不同的两点Pi=(1,2),使得△PiA1A2(i=1,2)构成以A1A2为斜边的直角三角形,则双曲线离心率e的取值范围是( )
A.( , )
B.( , )
C.(1, )
D.( ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,满足,.数列满足,,且.
(1)求数列和的通项公式;
(2)若,数列的前项和为,对任意的,都有,求实数的取值范围;
(3)是否存在正整数,,使,,()成等差数列,若存在,求出所有满足条件的,,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com