【题目】天气预报说,在今后的三天中,每一天下雨的概率为,用随机模拟的方法估计这三天中恰有两天下雨的概率.可利用计算机产生0到9之间的整数值的随机数,如果我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,顺次产生的随机数如下:
90 79 66 19 19 25 27 19 32 81 24 58 56 96 83
43 12 57 39 30 27 55 64 88 73 01 13 13 79 89
,这三天中恰有两天下雨的概率约为______.
科目:高中数学 来源: 题型:
【题目】已知抛物线:()的焦点为,准线为,若点在抛物线上,点在直线上,且是周长为12的等边三角形.
(1)求抛物线的标准方程;
(2)设过点的直线与抛物线交于不同的两点,,若,求直线斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点, 轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(Ⅰ)求曲线的普通方程与直线的直角坐标方程;
(Ⅱ)已知直线与曲线交于, 两点,与轴交于点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为了了解市民搭乘公共交通工具的出行情况,收集并整理了2017年全年每月公交和地铁载客量的数据,绘制了下面的折线图:
根据该折线图,下列结论错误的是( )
A.全年各月公交载客量的极差为41B.全年各月地铁载客量的中位数为22.5
C.7月份公交与地铁的载客量相差最多D.全年地铁载客量要小于公交载客量
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某景区拟将一半径为的半圆形绿地改建为等腰梯形(如图,其中为圆心,点在半圆上)的放养观赏鱼的鱼池,周围四边建成观鱼长廊(宽度忽略不计).设,鱼池面积为(单位:).
(1)求S关于的函数表达式,并求鱼池面积何时最大;
(2)已知鱼池造价为每平方米2000元,长廊造价为每米3000元,问此次改建的最高造价不超过多少?(取计算)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com