精英家教网 > 高中数学 > 题目详情
椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.今有一个水平放置的椭圆形台球盘,点A、B是它的焦点,长轴长为2a,焦距为2c,静放在点A的小球(小球的半径忽略不计)从点A沿直线出发,经椭圆壁反射后第一次回到点A时,小球经过的路程是_____________.
4a或2(a-c)或2(a+c)
解答:解:(1)静放在点A的小球(小球的半径不计)从点A沿直线出发,经椭圆壁右顶点反弹后第一次回到点A时,小球经过的路程是2(a-c);
(2)静放在点A的小球(小球的半径不计)从点A沿直线出发,经椭圆壁左顶点反弹后第一次回到点A时,小球经过的路程是2(a+c);
(3)静放在点A的小球(小球的半径不计)从点A沿直线出发,经椭圆壁非左右顶点反弹后第一次回到点A时,小球经过的路程是4a.
由于三种情况均有可能,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


(本题满分12分)
已知椭圆)的离心率,左、右焦点分别为,点满足:在线段的中垂线上.
(1)求椭圆的方程;
(2)若斜率为)的直线轴、椭圆顺次相交于点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,一圆形纸片的圆心为O,  F是圆内一定点,M是圆周
上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕
为CD, 设CD与OM交于P, 则点P的轨迹是( 
A.椭圆B.双曲线
C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为,射线与椭圆的交点为,过作倾斜角互补的两条直线,分别与椭圆于两点(异于).
(1)求证:直线
(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与椭圆共焦点,且过点(-2,)的双曲线方程为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

焦点为F(0,10),渐近线方程为4x±3y=0的双曲线的方程是     (   )
A.=1B.=1C.="1" D.=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知动圆过定点,且与定直线相切.
(1)求动圆圆心的轨迹的方程;
(2)若是轨迹的动弦,且, 分别以为切点作轨迹的切线,设两切线交点为,证明:.

查看答案和解析>>

同步练习册答案