精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|loga|x﹣1||(a>0,a≠1),若x1<x2<x3<x4 , 且f(x1)=f(x2)=f(x3)=f(x4),则 + + + =

【答案】2
【解析】解:不妨设a>1,
则令f(x)=|loga|x﹣1||=b>0,
则loga|x﹣1|=b或loga|x﹣1|=﹣b;
故x1=﹣ab+1,x2=﹣ab+1,x3=ab+1,x4=ab+1,
+ =
+ =
+ + + = +
= + =2;
所以答案是:2.
【考点精析】解答此题的关键在于理解函数的零点的相关知识,掌握函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务:

①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));

租用单车数量 (千辆)

2

3

4

5

8

每天一辆车平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

-0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)= 的定义域为A,m>0,函数g(x)=4 x1(0<x≤m)的值域为B.
(1)当m=1时,求 (R A)∩B;
(2)是否存在实数m,使得A=B?若存在,求出m的值; 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构为了解某地区中学生在校月消费情况,随机抽取了100名中学生进行调查.如图是根据调查的结果绘制的学生在校月消费金额的频率分布直方图.已知[350,450),[450,550),[550,650)三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群”.

(1)求m,n的值,并求这100名学生月消费金额的样本平均数 (同一组中的数据用该组区间的中点值作代表);
(2)根据已知条件完成下面2×2列联表,并判断能否有90%的把握认为“高消费群”与性别有关?

高消费群

非高消费群

合计

10

50

合计

(参考公式: ,其中n=a+b+c+d)

P(K2≥k)

0.10

0.05

0.025

0.010

0.005

0.001

k

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个结论,其中正确的是(
A.若 ,则a<b
B.“a=3“是“直线l1:a2x+3y﹣1=0与直线l2:x﹣3y+2=0垂直”的充要条件
C.在区间[0,1]上随机取一个数x,sin 的值介于0到 之间的概率是
D.对于命题P:?x∈R使得x2+x+1<0,则?P:?x∈R均有x2+x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场在店庆一周年开展“购物折上折活动”:商场内所有商品按标价的八折出售,折后价格每满500元再减100元.如某商品标价为1500元,则购买该商品的实际付款额为1500×0.8﹣200=1000(元).设购买某商品得到的实际折扣率= .设某商品标价为x元,购买该商品得到的实际折扣率为y.
(1)写出当x∈(0,1000]时,y关于x的函数解析式,并求出购买标价为1000元商品得到的实际折扣率;
(2)对于标价在[2500,3500]的商品,顾客购买标价为多少元的商品,可得到的实际折扣率低于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在区间(0,1)上是增函数的是(
A.y=|x|
B.y=3﹣x
C.y=
D.y=﹣x2+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校学生社团为了解“大数据时代”下大学生就业情况的满意度,对20名学生进行问卷计分调查(满分100分),得到如图所示的茎叶图:

(1)计算男生打分的平均分,观察茎叶图,评价男女生打分的分散程度;

(2)从打分在80分以上的同学随机抽3人,求被抽到的女生人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且曲线处的切线与平行.

(1)求的值;

(2)当时,试探究函数的零点个数,并说明理由.

查看答案和解析>>

同步练习册答案