精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=|x-a|,g(x)=x2+ax+1(a>0),若f(x)、g(x)的图象在y轴上的截距相等.
(1)求a的值;
(2)设h(x)=f(x)+g(x),作函数h(x)的图象,并写出其单调区间.

分析 (1)由已知中函数f(x)与g(x)的图象在y轴上的截距相等,结合函数f(x)=|x-a|,g(x)=x2+2ax+1(a为正常数),我们可以构造关于a的方程,解方程可以求出a的值
(2)由(1)中结论,我们可以得到函数h(x)=f(x)+g(x)的解析式,利用零点分段法,我们可以将其转化为分段函数的形式,再由图象,即可分析出函数的单调递增区间.

解答 解:(1)∵函数f(x)与g(x)的图象在y轴上的截距相等
∴f(0)=g(0),即|a|=1,
又a>0,
∴a=1. 
(2)由(1)可知f(x)=|x-1|,g(x)=x2+2x+1,
∴h(x)=f(x)+g(x)=|x-1|+x2+2x+1=$\left\{\begin{array}{l}{{x}^{2}+3x,x≥1}\\{{x}^{2}+x+2,x<1}\end{array}\right.$,其图象为:
有图可知,h(x)在(-∞,-$\frac{1}{2}$)上单调递减,在[$\frac{1}{2}$,+∞)单调递增.

点评 本题考查的知识点是函数与方程的综合运用,函数的单调性及单调区间,零点分段法,二次函数的性质,其中利用零点分段法将函数的解析式化为分段函数的形式,画出图象是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,三棱台ABC-A1B1C1中,A1B1:AB=1:2,则三棱锥B-A1B1C1与三棱锥A1-ABC的体积之比为(  )
A.1:2B.1:3C.1:$\sqrt{2}$D.1:4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知y=f(x)是定义在R上的偶函数,且在[0,+∞)上是单调增函数,若f(-1)=0,则满足不等式(x-1)f(lnx)<0的x的取值范围是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=3+log2x的定义为[1,4],则函数y=f2(x)+f(x2)的值域是(  )
A.[-4,32]B.[12,21]C.[21,32]D.[12,32]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,过点M(-2,0)作直线1交双曲线x2-y2=1于A,B两点,0为原点,以OA,OB为一组邻边作平行四边形OAPB.
(1)试求点P的轨迹方程;
(2)是否存在这样的直线l,使四边形OAPB为矩形,若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知正项数列{an},{bn}满足an+1=4bn,且bn+1=an+bn,xn=$\frac{{a}_{n}}{{b}_{n}}$,则当x2013+x2014最小时,x2015=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}满足an=$\left\{\begin{array}{l}{n,n=2k-1}\\{{a}_{k},n=2k}\end{array}\right.$(k∈N*),设f(n)=a1+a2+…+${a}_{{2}^{n}-1}$+${a}_{{2}^{n}}$,则f(2016)-f(2015)=42015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.当a<1时,f′(x)=2x-a-1且f(0)=a,则不等式f(x)<0的解集是(a,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与直线x=±$\sqrt{2}$a分别交于A,B,C,D四点,且四边形ABCD为正方形,则此双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案