精英家教网 > 高中数学 > 题目详情
2.在△ABC中,若a=7,b=8,c=9,则$\frac{sin2A}{sinC}$=$\frac{28}{27}$.

分析 利用余弦定理求出cosC,cosA,即可得出结论.

解答 解:∵△ABC中,a=7,b=8,c=9,
∴cosC=$\frac{49+64-81}{2×7×8}$=$\frac{2}{7}$,cosA=$\frac{64+81-49}{2×8×9}$=$\frac{2}{3}$
∴sinC=$\frac{3\sqrt{5}}{7}$,sinA=$\frac{\sqrt{5}}{3}$,
∴$\frac{sin2A}{sinC}$=$\frac{2×\frac{\sqrt{5}}{3}×\frac{2}{3}}{\frac{3\sqrt{5}}{7}}$=$\frac{28}{27}$.
故答案为:$\frac{28}{27}$.

点评 本题考查余弦定理,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=log2(x-a)(a∈R).
(1)当a=2时,解方程f(x)-f(x+1)=-1;
(2)如图所示的平面直角坐标系中,每一个小方格的边长均为1,当a=1时,试在该坐标系中作出函数y=|f(x)|的简图,并写出(不需要证明)它的定义域、值域、奇偶性、单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某变速运动的物体,路程s(米)随时间t(秒)变化的函数关系式是s=t2-2t+5,则此物体在t=1秒时的瞬时速度为(  )
A.2m/sB.0m/sC.4m/sD.-4m/s

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)实数a,b满足不等式组$\left\{\begin{array}{l}{b>0}\\{a+b+1<0}\\{3a+b+9>0}\end{array}\right.$,则在坐标平面aOb内,点(a,b)对应的区域S,求目标函数z=2a-b的取值范围.
(2)过点(-5,1)的光线经x轴反射后的光线过区域S,求反射光线所在直线l经过区域S内的整点(即横纵坐标为整数的点)时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}满足a1=1,a2=2,an=$\frac{{{a_{n-1}}}}{{{a_{n-2}}}}$(n≥3,且n∈N*),则a2015=(  )
A.$\frac{1}{2}$B.1C.2D.2-2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设{an}是一个公差不为零的等差数列,其前n项和为Sn,已知S9=90,且a1,a2,a4成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\frac{1}{x^2}$+1的图象关于(  )
A.y轴对称B.直线y=-x对称C.坐标原点对称D.直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=2ax+1+3(a>0且a≠1)的图象经过的定点坐标是(-1,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左右顶点分别为A(-5,0),B(5,0),点M是椭圆上异于A,B的动点,且直线AM与MB的斜率之积为$-\frac{16}{25}$;
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若抛物线y2=2px(p>0)的焦点与椭圆C的右焦点重合,求抛物线上的点到直线l:3x+y+2=0的距离的最小值.

查看答案和解析>>

同步练习册答案