【题目】已知函数,.
(1)若,,求实数的值.
(2)若,,求正实数的取值范围.
【答案】(1)0(2)
【解析】
(1)求得和,由,,得,令,令导数求得函数的单调性,利用,即可求解.
(2)解法一:令,利用导数求得的单调性,转化为,令(),利用导数得到的单调性,分类讨论,即可求解.
解法二:可利用导数,先证明不等式,,,,
令(),利用导数,分类讨论得出函数的单调性与最值,即可求解.
(1)由题意,得,,
由,…①,得,
令,则,
因为,所以在单调递增,
又,所以当时,,单调递增;
当时,,单调递减;
所以,当且仅当时等号成立.
故方程①有且仅有唯一解,实数的值为0.
(2)解法一:令(),
则,
所以当时,,单调递增;
当时,,单调递减;
故
.
令(),
则.
(i)若时,,在单调递增,
所以,满足题意.
(ii)若时,,满足题意.
(iii)若时,,在单调递减,
所以.不满足题意.
综上述:.
解法二:先证明不等式,,,…(*).
令,
则当时,,单调递增,
当时,,单调递减,
所以,即.
变形得,,所以时,,
所以当时,.
又由上式得,当时,,,.
因此不等式(*)均成立.
令(),
则,
(i)若时,当时,,单调递增;
当时,,单调递减;
故
.
(ii)若时,,在单调递增,
所以 .
因此,①当时,此时,,,
则需
由(*)知,,(当且仅当时等号成立),所以.
②当时,此时,,
则当时,
(由(*)知);
当时,(由(*)知).故对于任意,.
综上述:.
科目:高中数学 来源: 题型:
【题目】不重合的两条直线,和不重合的两个平面,,下面的几个命题:①若,且,则;②若,与平面成等角,则;③若,,且,则;④若,,则;⑤若,异面,且,均与平面和平行,则.在这5个命题中,真命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥S-ABCD中,底面ABCD,四边形ABCD是边长为1的正方形,且,点M是SD的中点.请用空间向量的知识解答下列问题:
(1)求证:;
(2)求平面SAB与平面SCD夹角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.
某读书APP抽样调查了非一线城市M和一线城市N各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.
(1)请填写以下列联表,并判断是否有99.5%的把握认为用户活跃与否与所在城市有关?
活跃用户 | 不活跃用户 | 合计 | |
城市M | |||
城市N | |||
合计 |
(2)以频率估计概率,从城市M中任选2名用户,从城市N中任选1名用户,设这3名用户中活跃用户的人数为,求的分布列和数学期望.
(3)该读书APP还统计了2018年4个季度的用户使用时长y(单位:百万小时),发现y与季度()线性相关,得到回归直线为,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度()该读书APP用户使用时长约为多少百万小时.
附:,其中.
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱中,,,为的中点.
(I)若为上的一点,且与直线垂直,求的值;
(Ⅱ)在(I)的条件下,设异面直线与所成的角为45°,求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知AB为圆O的直径,且,点D为线段AO的中点,点C为圆O上的一点,且,平面ABC,.
(1)求证:平面PAB.
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图在直角梯形ABCD中,AB//CD,AB⊥BC,AB=3BE=3,CD=2,AD=2.将△ADE沿DE折起,使平面ADE⊥平面BCDE.
(1)证明:BC⊥平面ACD;
(2)求直线AE与平面ABC所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com