精英家教网 > 高中数学 > 题目详情

【题目】设递增的等比数列{an}的前n项和为Sn , 已知2(an+an+2)=5an+1 , 且
(1)求数列{an}通项公式及前n项和为Sn
(2)设 ,求数列{bn}的前n项和为Tn

【答案】
(1)解:设等比数列{an}的公比为q,

则由2(an+an+1)=5an+1得,2q2﹣5q+2=0,解得 或q=2,

又由 知, ,∴a1=q,

∵{an}为递增数列,∴


(2)解:

记数列{(n+1)2n+1}的首n项和为Pn,则

两式相减得:

又{2(n+1)}的前n项和为2(2+3+4+…+n+1)=n(n+3),


【解析】(1)利用等比数列的通项公式与求和公式即可得出.(2)利用“错位相减法”、等差数列与等比数列的求和公式即可得出.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)=|ax﹣1|. (Ⅰ)若f(x)≤2的解集为[﹣6,2],求实数a的值;
(Ⅱ)当a=2时,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (x∈R).
(Ⅰ)求函数f(x)的最小正周期及单调递减区间;
(Ⅱ)若 ,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣lnx,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若a=e2 , 当x∈(0,e]时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+exa , g(x)=ln(x+2)﹣4eax , 其中e为自然对数的底数,若存在实数x0 , 使f(x0)﹣g(x0)=3成立,则实数a的值为(
A.﹣ln2﹣1
B.﹣1+ln2
C.﹣ln2
D.ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1 , F2是椭圆 (0<b<2)的左、右焦点,过F1的直线l交椭圆于A,B两点,若|AF2|+|BF2|最大值为5,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1在平面直角坐标系中的参数方程为 (t为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,有曲线C2:ρ=2cosθ﹣4sinθ
(1)将C1的方程化为普通方程,并求出C2的平面直角坐标方程
(2)求曲线C1和C2两交点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 为奇函数.
(1)则a=
(2)函数g(x)=f(x)﹣ 的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线E:x2=2py(p>0)焦点F且倾斜角的60°直线l与抛物线E交于点M,N,△OMN的面积为4. (Ⅰ)求抛物线E的方程;
(Ⅱ)设P是直线y=﹣2上的一个动点,过P作抛物线E的切线,切点分别为A、B,直线AB与直线OP、y轴的交点分别为Q、R,点C、D是以R为圆心、RQ为半径的圆上任意两点,求∠CPD最大时点P的坐标.

查看答案和解析>>

同步练习册答案