【题目】在平面直角坐标系中,圆的参数方程为(为参数),直线的参数方程为(为参数),设原点在圆的内部,直线与圆交于、两点;以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求直线和圆的极坐标方程,并求的取值范围;
(2)求证:为定值.
科目:高中数学 来源: 题型:
【题目】已知椭圆,过点的两条不同的直线与椭圆E分别相交于A,B和C,D四点,其中A为椭圆E的右顶点.
(1)求以AB为直径的圆的方程;
(2)设以AB为直径的圆和以CD为直径的圆相交于M,N两点,探究直线MN是否经过定点,若经过定点,求出定点坐标;若不经过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数).
(1)求曲线,的普通方程;
(2)已知点,若曲线,交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年北京世园会的吉祥物“小萌芽、小萌花”,是一对代表着生命与希望、勤劳与美好、活泼可爱的园艺小兄妹,造型创意来自东方文化中百子图的“吉祥娃娃”,通过头饰、道具、服装创意的巧妙组合,被赋予了普及园艺知识、传播绿色理念的特殊使命.现将三张分别印有“小萌芽”、“小萌花”、“牡丹花”这三个图案的卡片(卡片的形状和大小相同,质地也相同)放入盒子中.若从盒子中依次有放回的取出两张卡片,则一张为小萌芽,一张为小萌花的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面内与两定点,连线的斜率之积等于的点的轨迹,加上、两点所成的曲线为.若曲线与轴的正半轴的交点为,且曲线上的相异两点、满足.
(1)求曲线的轨迹方程;
(2)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且以椭圆上的点和长轴两端点为顶点的三角形的面积的最大值为.
(1)求椭圆的方程;
(2)经过定点的直线交椭圆于不同的两点、,点关于轴的对称点为,试证明:直线与轴的交点为一个定点,且(为原点).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com