精英家教网 > 高中数学 > 题目详情
当x∈[-1,1]时,函数f(x)=3x-2的值域是(  )
分析:利用指数函数的单调性,先判断函数f(x)的单调性,再利用单调性求函数的值域即可
解答:解:∵函数f(x)=3x-2在R上为单调增函数,
∴f(-1)≤f(x)≤f(1),即
1
3
-2≤f(x)≤3-2
即f(x)∈[-
5
3
,1]

故选 C
点评:本题考查了指数函数的单调性,利用单调性求函数值域的方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线f(x)=x3-3ax(a∈R),直线y=-x+m,m∈R
(Ⅰ)当a=
4
3
时,且曲线f(x)与直线有三个交点,求m的取值范围
(Ⅱ)若对任意的实数m,直线与曲线都不相切,
(ⅰ)试求a的取值范围;
(ⅱ)当x∈[-1,1]时,曲线f(x)的图象上是否存在一点P,使得点P到x轴的距离不小于
1
4
.试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+b.
(1)若对任意的实数x,都有f(x)≥2x+a,证明:b≥1;
(2)当x∈[-1,1]时,f(x)的最大值为b-a+1,求a的取值范围;
(3)若a=-2,关于x的方程|f(x)|=1有4个不相等的实数根,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)(x∈R)满足f(x+2)=f(x),当x∈[-1,1]时,f(x)=x2,则y=f(x)的图象与y=1og2x的图象的交点共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax,g(x)=a2x+m,其中m>0,a>0且a≠1.当x∈[-1,1]时,y=f(x)的最大值与最小值之和为
5
2

(Ⅰ)求a的值;
(Ⅱ)若a>1,记函数h(x)=g(x)-2mf(x),求当x∈[0,1]时h(x)的最小值H(m); 
(Ⅲ)若a>1,且不等式|
f(x)-mg(x)
f(x)
|≤1
在x∈[0,1]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax,g(x)=a2x+m,其中m>0,a>0且a≠1.当x∈[-1,1]时,y=f(x)的最大值与最小值之和为
52

(Ⅰ)求a的值;
(Ⅱ)若a>1,记函数h(x)=g(x)-2mf(x),求当x∈[0,1]时,h(x)的最小值H(m).

查看答案和解析>>

同步练习册答案