精英家教网 > 高中数学 > 题目详情
设椭圆
x2
b2
+
y2
a2
=1(a>b>0)的焦点为F1、F2,P是椭圆上任一点,若∠F1PF2的最大值为
3

(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线l与椭圆交于M、N两点,且l与以原点为圆心,短轴长为直径的圆相切.已知|MN|的最大值为4,求椭圆的方程和直线l的方程.
分析:(1)由椭圆的定义可知,|PF1|+|PF2|=2a?,由余弦定理可得,COS∠F1PF2=
PF12+
PF
2
2
F1F22
2PF1PF2
,代入可求离心率
(2)由(I)可得e=
3
2
,从而可得椭圆方程为y2+4x2=4b2,该直线l:y=kx+m.由直线l与圆x2+y2=b2相切,可得m2=b2(1+k2),联立方程
y2+4x2=4b2
y=kx+m
可得(4+k2)x2+2kmx+m2-4b2=0而|MN|=4
3
b•
1
1+k2
+
3
1+k2
≤2b?可求
解答:解:∵椭圆方程为
x2
b2
+
y2
a2
=1(a>b>0)?
(1)|PF1|+|PF2|=2a?
cosF1PF2=
|PF1|2+|PF2|2-|F1F2|2
2|PF1|•|PF2|
=
4a2-4c2
2|PF1|•|PF2|
-1>1-2e2=-
1
2

∴e=
3
2

(2)∵e=
3
2
,∴a2=4b2.?
∴椭圆方程为y2+4x2=4b2?
该直线l:y=kx+m.?
∵直线l与圆x2+y2=b2相切,∴m2=b2(1+k2)①?
y2+4x2=4b2
y=kx+m
得(4+k2)x2+2kmx+m2-4b2=0
∵|MN|=4
3
b•
1
1+k2
+
3
1+k2
≤2b?
当且仅当k=±
2
时取等号.
∴l:y=±
2
x+2
3

此时椭圆方程为:
x2
4
+
y2
16
=1.
点评:本题主要考查椭圆的性质的简单运用,及直线与椭圆的位置关系的应用,考查了考试的基本运算的能力,属于综合性试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是椭圆
x2
b2
+
y2
a2
=1
,(a>b>0)上的两点,已知向量
m
=(
x1
b
y1
a
),
n
=(
x2
b
y2
a
),且
m
n
=0
,若椭圆的离心率e=
3
2
,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b>0F是方程
x2
b2
+
y2
a2
=1
的椭圆E的一个焦点,P、A,B是椭圆E上的点,
PF
与x轴平行,
PF
=
a
4
,设A(x1,y1),B(x2,y2),
i
=(
x1
b
y1
a
)
n
=(
x2
b
y2
a
)
i
n
原点O与A、B两点构成的△AOB的面积为S
(I )求椭圆E的离心率
(II)设椭圆E上的点与椭圆£的长轴的两个端点构成的三角形的面积的最大值等于2,S是否为定值?如果是,求出这个定值:如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆M:
y2
a2
+
x2
b2
=1
(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且内切于圆x2+y2=4.
(1)求椭圆M的方程;
(2)若直线y=
2
x+m交椭圆于A、B两点,椭圆上一点P(1,
2
)
,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:河南模拟 题型:解答题

设椭圆M:
y2
a2
+
x2
b2
=1
(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且内切于圆x2+y2=4.
(1)求椭圆M的方程;
(2)若直线y=
2
x+m交椭圆于A、B两点,椭圆上一点P(1,
2
)
,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:眉山二模 题型:解答题

设A(x1,y1),B(x2,y2)是椭圆
x2
b2
+
y2
a2
=1
,(a>b>0)上的两点,已知向量
m
=(
x1
b
y1
a
),
n
=(
x2
b
y2
a
),且
m
n
=0
,若椭圆的离心率e=
3
2
,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案